
Monatsh. Math. 130, 99±108 (2000)

Haar Function Based Estimates of the Star-Discrepancy
of Plane Digital Nets

By

Karl Entacher�
UniversitaÈt Salzburg, Austria

(Received 30 August 1999; in revised form 17 January 2000)

Abstract. We apply the Haar function system to estimate the star-discrepancy of special digital
�t;m; s�-nets in dimension s � 2. We use a basic technique based on discretization combined with an
exact calculation of the discrete star-discrepancy.
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1. Introduction

In the present paper we show how to estimate the star-discrepancy of special
digital �t;m; s�-nets using Haar functions. We apply the technique used by
Hellekalek [5, 6, 7], who proved the inequality of ErdoÈs-TuraÂn-Koksma for Walsh-
and Haar function systems.

A direct application of the latter inequality, which provides an upper bound for
the discrepancy of a point set in the s-dimensional unit cube in terms of Weyl
sums, yields, for arbitrary �t;m; s�-nets, no improvements of existing estimates of
Niederreiter [16], which are due to weak upper bounds of the Weyl sums in
general, see [2].

The power of our approach becomes apparent for special construction methods
called digital nets. We applied the Haar function technique to estimate the star-
discrepancy of special digital �t;m; s�-nets in dimension s � 2 which can be
derived from the classical Hammersley point set by digit truncation. With this, we
obtain a class of plane nets with steadily decreasing equidistribution property, from
`̀ optimal'' �0;m; 2�-nets to the classical uniform lattice.

Our strategy provides a method for the exact calculation of the discrete star-
discrepancy for such nets, and therefore yields best possible estimates and
sometimes exact results of the star-discrepancy.

For further applications of Haar functions in (quasi) Monte Carlo methods and
for related topics, see [2, 3, 8, 9, 12, 19].
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2. Basic Notations

De®nition 2.1. Let P � �xn�Nÿ1
n�0 be a point set in �0; 1�s. The star-discrepancy

D�N (P) of P is de®ned as

D�N�P� :� sup
J2J�

1

N
� ]fn : xn 2 J; 04 n<Ng ÿ �s�J�

���� ����; �1�

where J� denotes the class of all subintervals J of �0; 1�s of the form
J �Qs

i�1�0; ui�; 04 ui 4 1; 14 i4 s; ]M denotes the number of elements of a
set M and �s the Lebesgue measure on �0; 1�s. De®ning fJ�x� :� 1J�x� ÿ �s�J�;
x 2 �0; 1�s, with the characteristic function 1J , yields

D�N�P� � sup
J2J�

SN� fJ ;P�j j where SN� fJ ;P� :� 1

N

XNÿ1

n�0

fJ�xn�: �2�

Consider integers M and ai, 14 i4 s, where 04 ai 4M and M> 0. Using the
smaller class J�M of all ®nite precision intervals G � Qs

i�1�0; ai=M�, in (1) and (2),
yields the concept of discrete star-discrepancy E�N;M�P� :� sup

G2J�M jSN� fG;P�j,
which provides an obvious equidistribution measure for suitable ®nite precision
point sets.

Note that the local discrepancy SN� fJ ;P� equals the Monte-Carlo approxima-
tion of

R
�0;1�s fJ d�s. We will use the notation SN�g;P� for an arbitrary function g on

�0; 1�s as well. For orthogonal function systems F :� f�kg the expression
SN��k;P� is called Weyl sum.

For the discrepancy estimates we use the Haar function system in base b � 2.
The de®nitions and basic properties of Haar functions relative to an arbitrary
integer base b52 are given in [6, 7]. We brie¯y recall the basic notations which
will be used in the following sections.

For an integer k5 0 and an arbitrary number x 2 �0; 1�; let k �P1j�0 kjb
j and

x �P1j�0 xjb
ÿjÿ1, kj; xj 2 f0; 1; . . . ; bÿ 1g, xj 6� bÿ 1 for in®ntely many j, be the

unique b-adic expansions of k and x in base b. For g 2 N we de®ne k�g� :�Pgÿ1
j�0 kjb

j and x�g� :�Pgÿ1
j�0 xjb

ÿjÿ1. Further let k�0� :� 0 and x�0� :� 0. The
support of a given Haar function hk; k5 0, is equal to an elementary b-adic
interval. We now de®ne sets of integers k, for which such intervals have the same
length (resolution).

De®nition 2.2. (1) Let g be a nonnegative integer. Then ��g� :�
fk 2 N : bg 4 k< bg�1g. Further, let ��ÿ1� :� f0g, and the sets N0 :�
N [ f0g, and N1 � N0 [ fÿ1g.

(2) If g � �g1; . . . ; gs�, s5 2 and gi 2 N1, then ��g� :�Qs
i�1 ��gi�.

De®nition 2.3. Let eb : Zb ! K; where Zb � f0; . . . ; bÿ 1g is the least residue
system modulo b, and K :� fz 2 C : jzj � 1g, denote the function
eb�a� :� exp�2�i a

b
�; �a 2 Zb�. The k-th Haar function hk; k5 0, to the

base b is de®ned as follows: If k � 0 �g � ÿ1�, then h0�x� :� 1 8x 2 �0; 1�.
If k 2 ��g�, g5 0, then hk�x� :� b

g
2 � eb�a � kg� for x 2 ��b k�g� � a�=bg�1;
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�b k�g��a� 1�=bg�1� and hk�x� :� 0 otherwise. The k-th normalized Haar function
Hk on �0; 1� is de®ned as H0 :� h0 and, if k 2 ��g�; g5 0, then Hk :� bÿ

g
2 � hk.

Hence, the support Dk of the k-th Haar function hk is given as the following
elementary b-adic interval : If k � 0, then D0 :� �0; 1�: If k 2 ��g�, g5 0, then
Dk :� �a=bg; �a� 1�=bg�; a � k�g�.

De®nition 2.4. Let Hb :� fhk : k :� �k1; . . . ; ks� 2 Ns
0g denote the Haar

function system to the base b on the s-dimensional torus �0; 1�s; s5 1. The k-th
Haar function hk is de®ned as hk�x� :�Qs

i�1 hki
�xi�; x � �x1; . . . ; xs� 2 �0; 1�s:

The normalized version Hk is de®ned in the same way and the supports of hk and
Hk are given by the elementary b-adic intervals Dk :� Qs

i�1 Dki
.

Sobol' [19] introduced the concept of �t;m; s�-nets in base 2, closely coherent
with an application of classical Haar functions in the theory of quasi-Monte Carlo
methods. The main contributions concerning development and analysis of such
nets are due to Niederreiter. He has introduced arbitrary bases, ef®cient
construction methods for such point sets and a comprehensive theory [13, 14,
16, 18].

De®nition 2.5. Let 04 t4m and b5 2 be integers. A �t;m; s�-net in base b is
a point set P consisting of bm points in �0; 1�s such that every elementary interval I
in base b with volume �s�I� � btÿm contains exactly bt points of P.

Digital nets provide ef®cient construction methods of �t;m; s�-nets. They are
de®ned in the following way.

De®nition 2.6. Let b5 2 be a given base. For 14 i4 s, let C�i� be m� m
matrices over Zb. In the following every integer n with 04 n< bm and
digit expansion

Pmÿ1
i�0 nib

i, ni 2 Zb , is identi®ed with the vector ~n �
�n0; . . . ; nmÿ1�t 2 Zm

b , and each x 2 �0; 1� with ®nite digit expansion

x �Pmÿ1
i�0 xi=bi�1, xi 2 Zb, is identi®ed with ~x � �x0; . . . ; xmÿ1�t 2 Zm

b : Consider

~x�i�n � C�i� �~n for 04 n< bm and 14 i4 s. Then we obtain the following point set
P 2 �0; 1�s

P � fxn : xn � �x�1�n ; . . . ; x�s�n �; 04 n< bmg: �3�
These point sets were de®ned in [10, 11] (in a more general form). The general

construction principle was introduced by Niederreiter (see [14, 15, 16, 18]).
Conditions [14, Section 6] were given for P to be a �t;m; s�-net in base b. For

example, if b is prime and c
�i�
1 ; . . . ; c�i�m are the row vectors of C�i�, then P is a

�t;m; s�-net in base b if and only if for all g1; . . . ; gs 2 N0 with g1 � � � � � gs �
mÿ t, the set of vectors fc�i�j : 14 j4 gi; 14 i4 sg is assumed to be linearly
independent over Zb. Concrete examples of digital �t;m; s�-nets can be found in
[9, 11, 14].

3. Examples of Plane Digital Nets

The conditions above yield the following simple �t;m; 2�-nets Pt, de®ned by
the matrices
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C�1� :�

000 � � � 000 � � � 001
000 � � � 000 � � � 010

000 � � � 000 � � � 100

..

. ..
. ..

.

000 � � � 001 � � � 000

000 � � � 010 � � � 000

000 � � � 000 � � � 000

..

. ..
. ..

.

000 � � � 000 � � � 000

)
t

266666666666664

377777777777775
C�2� :�

100 � � � 000 � � � 000

010 � � � 000 � � � 000

001 � � � 000 � � � 000

..

. ..
. ..

.

000 � � � 100 � � � 000

000 � � � 010 � � � 000

000 � � � 000 � � � 000

..

. ..
. ..

.

000 � � � 000 � � � 000

)
t

266666666666664

377777777777775
The net P0 :� fxn � �0:nmÿ1 . . . n0; 0:n0 . . . nmÿ1� : 04 n< bmg is called the
Hammersley point set in base b which is well-known in the theory of uniform
distribution of sequences modulo one [16]. The calculation of the exact
discrepancy of P0 in base b � 2 is carried out in [4], and for arbitrary bases in
[1]. If we truncate t bits of each coordinate of the Hammersley point set, we obtain
Pt, t 5 1. Note that for even m and t � m=2 the uniform lattice with 2m points in
�0; 1�2 is obtained. Hence Pt, for increasing t; 04 t4m=2, provide examples of
point sets with steadily decreasing equidistribution property, from `̀ optimal''
�0;m; 2�-nets to the classical uniform lattice.

In the following let b � 2;m> 2; 04 t4 bm=2c and M � 2
; 
 2 N. Larger
values of t lead to a duplication of points. In other words, different values of n lead
to the same point.

3.1. Discrepancy Estimation of Pt . We follow a basic technique [7, 16] to
estimate the discrepancy of Pt and, as a ®rst step, approximate J 2 J by an inner
interval G1 and an outer interval G2 in �0; 1�s where these intervals have the form
G :�Qs

i�1�0; ai=M�; 04 ai 4M. The approximation may be realized in the
following way: Let J :� Qs

i�1�0; ui�;G1 :�Qs
i�1�0; vi� and G2 :� Qs

i�1�0;wi�. If
ui � ai=M; 04 ai 4M, we set vi � wi � ui, otherwise let vi :� ui�
� and wi :�
ui�
� � 1=M. Hence we get

jSN� fJ ;Pt�j4 �s�G2� ÿ �s�G1�� � �max jSN� fG1
;Pt�j; jSN� fG2

;Pt�jf g: �4�
Using [16, Lemma 3.9] to estimate the discretization error �s�G2� ÿ �s�G1�� � yields

D�N�Pt�4 1ÿ 1ÿ 1

M

� �s

�E�N;M�Pt�: �5�

From [7, Lemma 3.3] it follows that the Haar series of the function fG is ®nite
and, therefore,

SN� fG;Pt� �
X
k2��


c1G�k� � SN�hk;Pt�; �6�

with Haar coef®cients c1G�k� :� ��0;1�s 1G � hk d�s and ��
 :� fk � �k1; . . . ; ks�
2 Zs : 04 ki <M; 04 i4 sg n f0g.

The de®nition of �t;m; s�-nets easily yields SN�Hk;Pt� � 0 for all k 2 ��g�;
g 2 N2

1 n �ÿ1;ÿ1� with
P2

i�1�gi � 1�4mÿ t. The latter property and the fact
that all points of Pt have common denominator 2mÿt motivate a discretization with
M :� 2
 , 
 � mÿ t.
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Now, let G :� �0; ����0; �� with � � a=M and � � b=M; 14 a; b<M. We
partition sum (6) into parts with different resolution. From the Weyl sum property
above it follows that we only have to consider resolution vectors g � �g1; g2� with
04 g1; g2 <
 and 
 ÿ 14 g1 � g2 4 2�
 ÿ 1�. Hence for the calculation of the
discrete discrepancy E�N;M�Pt�;N � 2m, we must analyze

SN� fG;Pt� �
X
ÿ1

g1 ;g2�0

g1�g2 5 
ÿ1

2�g1�g2�=2
X

k2��g�
c1G�k� � SN�Hk;Pt�: �7�

3.2. Haar Coef®cients and Weyl Sums. Let k :� �k; l� 2 ��g�. Hellekalek
[6, Lemma 1] provides the following information on the Haar coef®cientsc1G�k� :� d1�0;���k� � d1�0;���l�. Let k 2 ��g�. For I :� �0; ��; � :� 0:�0�1 . . . �mÿtÿ1

and d��; g� :� �� ÿ ��g� 1�� it follows that

b1I�k� �

2
g
2 d��; g� : k�g� � �gÿ1 � �gÿ22� � � � � �02gÿ1;

�g � 0

2
g
2� 1

2g�1 ÿ d��; g�� : k�g� � �gÿ1 � �gÿ22� � � � � �02gÿ1;
�g � 1

0 : otherwise

8>>>><>>>>: �8�

For the calculation of the Weyl sums we distinguish between two cases:
(a) Let g1 � g2 � mÿ t � j, j 2 fÿ1; 0; . . . ; t ÿ 1g. This is attained by

g1 2 fj� 1; . . . ;mÿ t ÿ 1g and g2 � mÿ t � jÿ g1. A point xn :� �x; y� is
contained in the support Dk for k :� �k; l� 2 ��g�, if and only if

nmÿ1 � kg1ÿ1; . . . ; nmÿg1
� k0; n0 � lg2ÿ1; . . . ; nmÿg1�jÿtÿ1 � l0;

and the nmÿt�jÿg1
; . . . ; nmÿg1ÿ1 are arbitrary within~n. Thus Dk contains exactly 2tÿj

points xn with xg1
� nmÿg1ÿ1 and yg2

� nmÿg1�jÿt.
If j � t ÿ 1 then xg1

� yg2
and therefore

SN�Hk;Pt� � 1=2mÿ1 for all k 2 ��g�: �9�
Let j4 t ÿ 2. Because of mÿ g1 ÿ 1 6� mÿ g1 ÿ t � j we obtain SN�Hk;Pt� � 0
for all k 2 ��g�.

(b) Let g1 � g2 � m� j, 04 j4mÿ 2t ÿ 1, more precisely g1 2
ft � j� 1; . . . ;mÿ t ÿ 1g and g2 � m� jÿ g1. Similarly as in case (a) we have
xn :� �x; y� 2 Dk, k 2 ��g�, if and only if (here we already use the relevant
vectors k obtained from property (8))

nmÿ1 � �0; . . . ; nmÿg1
� �g1ÿ1; n0 � �0; . . . ; nmÿg1�jÿ1 � �g2ÿ1;

but now, all digits of ~n are ®xed. If �g1ÿ1 6� �g2ÿj or �g1ÿ2 6� �g2ÿj�1 or . . . or
�g1ÿj 6� �g2ÿ1 then Dk is empty, otherwise Dk contains exactly one point xn 2 Pt

with xg1
� nmÿg1ÿ1 � �g2ÿjÿ1 and yg2

� nmÿg1�j � �g1ÿjÿ1. Hence for j � 0 we
obtain

SN�Hk;Pt� �
2ÿm : �g1ÿ1 � �g2ÿ1

ÿ2ÿm : �g1ÿ1 6� �g2ÿ1

0 : otherwise;

8<: �10�
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and for j5 1,

SN�Hk;Pt� �

2ÿm : �g1ÿ1 � �g2ÿj; . . . ; �g1ÿj � �g2ÿ1;
�g1ÿjÿ1 � �g2ÿjÿ1

ÿ2ÿm : �g1ÿ1 � �g2ÿj; . . . ; �g1ÿj � �g2ÿ1;
�g1ÿjÿ1 6� �g2ÿjÿ1

0 : otherwise:

8>>>><>>>>: �11�

3.3. The Discrete Discrepancy of Pt. Motivated by the cases above, we have
to concentrate our consideration to

SN� fG;Pt� �
Xmÿtÿ1

g1 ;g2�t

g1�g2�mÿ1

2�mÿ1�=2
X

k2��g�
c1G�k� � SN�Hk;Pt� �12�

�
Xmÿtÿ1

g1 ;g2�t�1
g1�g2�m

2m=2
X

k2��g�
c1G�k� � SN�Hk;Pt� �13�

�
Xmÿ2tÿ2

j�1

Xmÿtÿ1

g1 ;g2�t�j�1

g1�g2�m�j

2�m�j�=2
X

k2��g�
c1G�k� � SN�Hk;Pt�: �14�

Halton and Zaremba [4] derived the exact discrepancy for P0. The intervals
J1 :� �0; �����0; ��� and J2 :� �0; ������0; ���� where the supremum in (1) is
attained, are given by

�� � 2m ÿ �ÿ1�m
3 � 2mÿ1

and ��� � 5 � 2mÿ2 � �ÿ1�m
3 � 2mÿ1

; �15�
where �� and ��� are equal to �� and ���, respectively in that order when m is
even, and in the reversed order when m is odd. These intervals obviously will play
a central role in our strategy below.

The discrepancy estimation of Pt needs to distinguish between several cases
(similar as for P0 in [1, 4]). We will give a detailed derivation only for even m,
where additionally, mÿ 2t ÿ 6 equals a multiple of four (for the reason of the latter
restriction, see below). The remaining cases can be done in almost the same way.

Since we know the `̀ maximal'' intervals for the discrepancy of P0, we can
derive the corresponding intervals for the discrete discrepancy of P0. We slightly
change the discretization step (4) for P0 and use the inner interval G1 :� J1 and
outer interval G2 :� �0; �0���0; �0� with �0 � �0 � �� � 1=2m � �2 � 2m � 1�=
�3 � 2m� � 0:10101 . . . 0101011. It follows that the discrete discrepancy for P0

equals jSN� fG2
;Pt�j.

The magnitude of the sums in (12,13,14) depend only on the Haar coef®cients
(8) and therefore on the binary expansion of �0 and �0 (the Weyl sums are constant
for each of the single sums, compare the cases I±III for t � 0 below).

Hence, if we change to Pt, t5 1, the expression (12,13,14) will attain the
maximum for � and � with the following sequences of digits

��t; �t�1; . . . ; �mÿtÿ2; �mÿtÿ1� � �1; 0; 1; 0; 1; . . . ; 0; 1; 0; 1; 1�
��t; �t�1; . . . ; �mÿtÿ2; �mÿtÿ1� � �1; 0; 1; 0; 1; . . . ; 0; 1; 0; 1; 1�:

104 K. Entacher



The remaining digits �0; . . . ; �tÿ1; �0; . . . ; �tÿ1, can be chosen arbitrarily.
Therefore the maximum intervals for the discrete star-discrepancy for Pt in general
are G2 :� �0; ����0; �� with

� � �

2t
� 2 � 2mÿ2t � 1

3 � 2mÿt
; � � �

0

2t
� 2 � 2mÿ2t � 1

3 � 2mÿt
; 04�; �0<2t: �16�

Note that the marginal points of corresponding inner intervals G1 equal �ÿ 1=2mÿt

and � ÿ 1=2mÿt.
From these intervals (i.e. from the binary sequences above) we can derive the

exact values of the Haar coef®cients. Suggested by (12,13,14) we distinguish
between three cases:

Case I: Let G � G2 and k 2 ��g� with g1 � g2 � mÿ 1 and g1 � t � 2i� 1,
04 2i4 �mÿ 2t ÿ 6�=2. From (8) we know that there is only one k 2 ��g� withc1G�k� 6� 0, and such a k depends on the binary representation of � and �. From the
binary sequences above it follows thatc1G�k� � 2�mÿ1�=2 � 1

2t�2i�3
� 1

2t�2i�5
� � � � � 1

2mÿtÿ1
� 1

2mÿt

� �
�

� 1

2m�tÿ2iÿ1
ÿ 1

2mÿtÿ2i�1
� 1

2mÿtÿ2i�3
� � � � � 1

2mÿtÿ1
� 1

2mÿt

� �� �
and thereforec1G�k� � 2�mÿ1�=2 � 1

9
� 1

22mÿ2t
� �2mÿ2tÿ2iÿ1 � 1� � �22i�2 ÿ 1�: �17�

The same strategy for g1 � t � 2i� 2; 04 2i4 �mÿ 2t ÿ 6�=2, yieldsc1G�k� � 2�mÿ1�=2 � 1
9
� 1

22mÿ2t
� �2mÿ2tÿ2iÿ2 ÿ 1� � �22i�3 � 1�; �18�

for only one k 2 ��g�. Furthermore we have SN�Hk;Pt� � 1=2mÿ1 for all
k 2 ��g� and therefore

�12� � 2

9

1

22�mÿt�
X�mÿ2tÿ6�=4

i�0

2mÿ2t

22i�1
� 1

� �
�22i�2 ÿ 1� � 2mÿ2t

22i�2
ÿ 1

� �
�22i�3 � 1�

� 2�2mÿ2t ÿ 1�
3 � 22�mÿt�

� 2

9
� mÿ 2t

2m
ÿ 1

9
� mÿ 2t

22�mÿt� �
4

27
� 1

2m
ÿ 4

27
� 1

22�mÿt� :

Case II: Let k 2 ��g� with g1 � g2 � m. If we proceed in a similar way as in
the upper case and distinguish between g1 � t � 2i� 2 and g1 � t � 2i� 3,
04 2i4 �mÿ2tÿ6�=2, then, with SN�Hk;Pt��1=2m, for the relevant k, we obtain

�13� � 2

9

1

22�mÿt�
X�mÿ2tÿ6�=4

i�0

2mÿ2t

22i�2
ÿ 1

� �
�22i�2 ÿ 1� � 2mÿ2t

22i�3
� 1

� �
�22i�3 � 1�

� 2�2mÿ2tÿ1 � 1�
3 � 22�mÿt� ÿ �2

�mÿ2t�=2 � 1�2
9 � 22�mÿt�

� 1

9
� mÿ 2t

2m
� 1

9
� mÿ 2t

22�mÿt� ÿ
1

27
� 1

2m
� 1

27
� 1

22�mÿt� :
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Case III: Let k 2 ��g� with g1 � g2 � m� j, 14 j4mÿ 2t ÿ 2. From (11)
we deduce that SN�Hk;Pt� � 0 for all j and therefore �14� � 0.

The cases I, II and III yield the value for discrete discrepancy for even m:

E�N;M�Pt� � 1

3
� mÿ 2t

2m
� 1

9
� 1

2m
ÿ 1

9
� 1

22�mÿt� �19�
3.4. Final Result and Conclusions. If we carry out almost the same

calculations for the remaining cases (m odd, and some other cases for even m) we
obtain the following ®nal result:

Proposition 3.1. For Pt , 04 t4 bm=2c, the digital �t;m; 2�-nets in base
b � 2, de®ned at the beginning of Section 3, we get �N � 2m, M � 2mÿt� :

E�N;M�Pt� � 1

3
� mÿ 2t

2m
� 1

9
� 1

2m
ÿ �ÿ1�m

9
� 1

22�mÿt� ;

and therefore

D�N�Pt�4 1ÿ 1ÿ 1

2mÿt

� �2

�E�N;M�Pt�:

Remark 3.1. (i) Let again m be even. If we use the intervals (16) where the
maximum in (4) occurs and calculate the discretization error ��s�G2� ÿ �s�G1�� �
�3 � 2m�t�1 ÿ 2m�1 ÿ 22�t�=�3 � 22m�, then we obtain

D�N�Pt�5 1

3
� mÿ 2t

2m
ÿ 5

9
� 1

2m
� 2

2mÿt
ÿ 4

9
� 1

22�mÿt� : �20�
(ii) From [4] we know that for t � 0 the latter expression equals the exact

discrepancy of P0. Further, from [16, Thm. 3.14], we deduce that D�N�Pm=2� �
1ÿ �1ÿ 1

2m=2�2 which equals expression (20) for t � m=2. Hence our estimates of

the star-discrepancy are best possible.
(iii) With increasing quality parameter t, a remarkable interaction between the

discretization error above and the discrete star-discrepancy occurs. Whereas for
t � 0 both values have almost the same magnitude, for increasing parameter t the
value of the discrete star-discrepancy vanishes and the discretization error
increases until it attains the exact value of the star-discrepancy.

(iv) Consider the point set P0. There are two different intervals where the
supremum in (1) occurs. In our case we obviously get the same number of
`̀ maximal'' intervals de®ned by �0 and �00 � 1ÿ �0. For Pt, 04 t 4m=2 there
are 2t�1 such intervals.

4. Summary and Outlook

Our examples show that Haar functions can be applied effectively to calculate
the discrete star-discrepancy of simple digital �t;m; s�-nets. The corresponding
arithmetic is elementary, but rather lengthy, and similarly to former discrepancy
calculations of related point sets [1, 4], needs to distinguish between several cases.

The previous knowledge of the intervals, where the discrepancy of P0 is
attained [4], provides additional simpli®cation in our case. Without this
information one has to ®nd the maximum of expression (7), which is an additional
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effort. Nevertheless, the Haar representation of local discrepancy (7) of such nets
enables additional information for a possible classi®cation of related digital
�t;m; 2�-nets with respect to discrepancy.

As an example, consider a different point set P0t, de®ned with the same matrix
C�1� and a slightly modi®ed C�2�, where only the ®rst column is changed to

�1; 1; . . . ; 1; 1�T . For P0t, if we proceed in the same way as in Subsection 3.2,
slightly different Weyl sums are obtained. Consider the same cases as in
Subsection 3.2, then in case (a), for j � t ÿ 1, we get

SN�Hk;P
0
t� � 2ÿ�mÿ1� : �0 � 0

ÿ2ÿ�mÿ1� : �0 � 1;

�
�21�

and SN�Hk;P
0
t� � 0 for j4 t ÿ 2. In case (b) and j � 0, we get

SN�Hk;P
0
t� �

2ÿm : �g1ÿ1 � �g2ÿ1 ÿ �0

ÿ2ÿm : �g1ÿ1 6� �g2ÿ1 ÿ �0

0 : otherwise;

8<:
and for j5 1,

SN�Hk;P
0
t� �

2ÿm : �g1ÿ1 � �g2ÿj ÿ �0; . . . ; �g1ÿj � �g2ÿ1 ÿ �0;
�g1ÿjÿ1 � �g2ÿjÿ1 ÿ �0

ÿ2ÿm : �g1ÿ1 � �g2ÿj ÿ �0; . . . ; �g1ÿj � �g2ÿ1 ÿ �0;
�g1ÿjÿ1 6� �g2ÿjÿ1 ÿ �0

0 : otherwise:

8>>>><>>>>:
The change of matrix C�2� obviously re¯ects in the variance of the Weyl sums

(changing the ®rst column of C�2� implies an additional dependence of the ®rst bit
of � in SN�Hk;P

0
t��.

For the ease of further explanation let m be even and t � 0. Using G � �0; �00�2,
�00 � 1ÿ �0 � 0:01010 . . . 0101, in the calculation of SN� fG;P

0
0�, in exactly the

same way as in Subsection 3.3, yields

E�N;M�P00�5
1

3
� m

2m
� 1

9
� 1

2m
ÿ 1

9
� 1

22m
; �22�

For G � �0; �0�2, �0 � 0:1010 . . . 101011, a smaller value of local discrepancy
SN� fG;P

0
0� is obtained, since the ®rst bit of �0 equals �00 � 1.

Expression (22) shows that the change of matrix C�2� was not powerful enough
to get an improvement of discrepancy. The Weyl sums for P0t remained almost the
same as for Pt except of an remarkable variance in case (a) (compare equations (9)
and (21)).

Consider the class of �0;m; 2�-nets P000 with the same matrix C�1� as for P0 and
matrix C�2� where the lower left triangle of C�2� is arbitrarily arranged with zeros
and ones. For such nets P000, the Weyl sums behave almost the same as for P00
above, only the expressions �l ÿ �0 change to somewhat larger expressions
dependent on the digits of � and the entries of matrix C�2�.

A closer look at (12,13,14) indicates that P0, and also P00, attain the largest
possible (discrete) discrepancy of all point sets P000, since the Weyl sums achieve
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their maximal positive values, constant in each single sum in (12,13,14), and the
Haar coef®cients are also positive and globally maximal for the above intervals G.

Finally we want to ask: Is there a net P000 with lower discrepancy as P0, and if
(presumably) yes, which nets P000 have smallest discrepancy? In other words: How
dense has the matrix C�2� to be ®lled up with ones to get a net with optimal
distribution. Note that an arbitrary digital �0;m; 2�-net can always be expressed
with matrix C�1� and a transformed matrix C�2�.
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