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On the Beauty of 
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Modulo One
Karl Entacher
This  article  provides  insights  into  the  theory  of  uniform  distribution  of
sequences  modulo  one.  Basic  examples  illustrate  elementary  concepts  and
special  graphical  presentations of (local) discrepancy,  the classical  measure
of  uniform  distribution,  exhibit  our  understanding  of  the  beauty  of  this
theory. 

‡ Introduction
The theory of uniform distribution modulo one was developed extensively within and
among several mathematical disciplines and numerous applications, mostly in the
fields  of  Monte  Carlo  and  quasi-Monte  Carlo  methods,  which  include  areas  like
numerical  integration,  random  number  generation,  stochastic  simulation,  and
approximation theory.

The  central  goals  of  this  theory  are  the  assessment  of  equidistribution  and  the
construction of well-distributed point sets and sequences in various mathematical
spaces.

The  following  sections  contain  several  supporting  ideas  for  introducing  the
theory  of  uniform  distribution  in  education,  offer  additional  information  for
researchers,  and  supplement  the  theory  with  impressive  images.  We  start  with
some  elementary  examples.  Section  2  treats  discrepancy,  which  is  the  classical
measure of uniform distribution. In Section 3 we use a special graphical presenta-
tion  of  local  discrepancy,  showing  the beauty  of  uniform distribution.  Section 4
considers  further  examples  of  point  sets  and  the  graphical  visualization  of  the
quality of their distribution.

Classical  and recent  concepts  of  the  theory  and further  references  are  discussed
in  [1,  2].  For  further  information  on  quasi-Monte  Carlo  methods  and  their
applications,  see  [3,  4,  5].  For  efficient  Mathematica  implementations  of  “quasi-
random numbers,”  see  QR Stream [6]. Note  that  only  small  point  sets  are  used
for our illustrations; the number of points used in practice is substantially larger.
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‡ Equidistributed Point Sets
The  classical  goal  of  the  theory  of  uniform  distribution  is  the  construction  of
well-distributed  point  sets  and  sequences;  a  classical  example  is  the  Hammersley
point set in dimension two.

Consider  integers  n,  0 § n < 2m ,  with  m œ !,  and  let  n = n0 + n1  2 + ∫ +
nm-1  2m-1  be the binary expansion of n. The Hammersley point set in dimension
s = 2 is defined by

(1)P0 := 8Hxn , yn L = H0. nm-1  nm-2  … n0 , 0. n0  n1  … nm-1 L, 0 § n < 2m <.
The  first  coordinates  xn  of  P0  yield  the  van  der  Corput  sequence  for  0 § n < 2m ,
and  the  second  coordinates  yn  consecutively  pass  through  the  numbers  n ê 2m .
Figure  1  exhibits  the  behavior  of  both  coordinates  xn  and  yn .  Note  that  the
sequence xn  orders the numbers in a balanced way in the upper and lower half of
the unit interval @0, 1L.
In[1]:= l = MyNet@4, 0D;

x = Map@First, lD;
y = Map@Last, lD;
ll = 8Table@8i, ToString@i - 1D<, 8i, 1, 16, 2<D, Automatic<;
g1 = ListPlot@x, PlotRange Ø 80, 1<, Ticks Ø ll,

AxesLabel Ø 8"n", "xn"<, PlotStyle Ø AbsolutePointSize@2D,
DisplayFunction Ø Identity, AspectRatio Ø 1D;

g2 = ListPlot@y, PlotRange Ø 80, 1<, Ticks Ø ll,
AxesLabel Ø 8"n", "yn"<, PlotStyle Ø AbsolutePointSize@2D,
DisplayFunction Ø Identity, AspectRatio Ø 1D;

Show@GraphicsArray@8g1, g2<D, DisplayFunction Ø $DisplayFunctionD
From In[1]:=
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Figure 1. Behavior of the coordinates xn  and yn  of the Hammersley point set for m = 4.

If  we  truncate  t  bits  from  each  coordinate  of  P0 ,  we  obtain  a  modified  point
set Pt : 

(2)Pt := 8 H0. nm-1  nm-2  … nt , 0. n0  n1  … nm-t-1 L, 0 § n < 2m <.
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Using  the  function  MyNet[m,t],  the  following  graphics  illustrate  the  structural
behavior  of  Pt .  Figure  2  shows  plots  for  m = 6  and  t = 0, 1, 2, 3  (from  left  to
right).

In[8]:= MyNet@m_, t_D :=
Map@FromDigits@8Drop@#, -tD, 0<, 2D &, 8Reverse@#D, #< & êü

Flatten@Outer@List, Sequence üü Table@80, 1<, 8m<DD, m - 1D, 82<D
In[9]:= Show@GraphicsArray@ Partition@Table@Graphics@8AbsolutePointSize@2D, Map@Point, MyNet@6, iDD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None,
PlotRange Ø 88-0.02, 1.01<, 8-0.02, 1.01<<,
FrameTicks Ø None, DefaultColor Ø Hue@0.65, 1, 0.75D,
FrameStyle Ø GrayLevel@0DD, 8i, 0, 3<D, 2DDD

From In[9]:=

Figure 2. Hammersley point set with bit truncation for m = 6 and t = 0, 1, 2, 3.

For  increasing  t,  the  resolution  of  the  points  of  Pt  decreases  and  therefore  the
distribution quality decreases as well. With m even and 0 § t § mÅÅÅÅÅÅ2 , the point sets
change  from  the  well-distributed  set  P0  (each  grid  line  with  resolution  1 ê 2m

contains  exactly  one  point)  to  the  classical  uniform  lattice  with  2m  points.  In
general,  for  the set  Pt ,  each  grid line  with  resolution 1 ê 2m-t  contains  exactly  2t

points (see also Figure 3).

In more modern language,  the point  set Pt  is  called a Ht, m, sL-net in base 2 and
dimension s = 2 (m  is  the parameter  for  the number  of points  N = 2m  and t  the
parameter  for  the  quality  of  distribution).  The  definition  of  an  arbitraryHt, m, sL-net  requires  a  slightly  modified  form  of  the  distribution  property
described  earlier:  every  half-open  elementary  s-dimensional  subinterval  J  of
I = @0, 1Ls  with  volume 2m-t  has  to  contain exactly  2t  points.  Figure  3 visualizes
the  latter  requirement  for  P0  and  P1 ,  m = 4.  Some  representative  elementary
two-dimensional  intervals  J  are  indicated  by  colored  rectangles  (the  lighter
rectangles  cover  the  darker  ones).  Note  that  the  constant  number  of  points
within  such  intervals,  by  definition,  must  also  be  valid  for  all  properly  shifted
elementary rectangles within I.
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In more modern language,  the point  set Pt  is  called a Ht, m, sL-net in base 2 and
dimension s = 2 (m is  the parameter  for  the number  of points  N = 2m  and t  the
parameter  for  the  quality  of  distribution).  The  definition  of  an  arbitraryHt, m, sL-net  requires  a  slightly  modified  form  of  the  distribution  property
described  earlier:  every  half-open  elementary  s-dimensional  subinterval  J  of
I = @0, 1Ls  with  volume 2m-t  has  to  contain exactly  2t  points.  Figure  3 visualizes
the  latter  requirement  for  P0  and  P1 ,  m = 4.  Some  representative  elementary
two-dimensional  intervals  J  are  indicated  by  colored  rectangles  (the  lighter
rectangles  cover  the  darker  ones).  Note  that  the  constant  number  of  points
within  such  intervals,  by  definition,  must  also  be  valid  for  all  properly  shifted
elementary rectangles within I.

In[10]:= vec1 = Table@i ê 2^4, 8i, 1, 2^4 - 1<D;
vec2 = Table@i ê 2^3, 8i, 1, 2^3 - 1<D;
g1 = Graphics@88Hue@0.65, 1, 0.75D, Rectangle@80.0, 0.0<, 81, 1 ê 16<D<,8Hue@0.65, 0.9, 0.75D, Rectangle@80.0, 0.0<, 81 ê 16, 1<D<,8Hue@0.65, 0.6, 0.75D, Rectangle@80.0, 0.0<, 81 ê 2, 1 ê 8<D<,8Hue@0.65, 0.4, 0.75D, Rectangle@80.0, 0.0<, 81 ê 8, 1 ê 2<D<,8Hue@0.65, 0.2, 0.75D, Rectangle@80.0, 0.0<, 81 ê 4, 1 ê 4<D<,8AbsolutePointSize@3D, Map@Point, MyNet@4, 0DD< <,8AspectRatio Ø 1, Frame Ø True, Axes Ø None, FrameTicks Ø None,

PlotRange Ø 880.0, 1.0<, 80.0, 1.0<<, GridLines Ø 8vec1, vec1<< D;
g2 = Graphics@88Hue@0.65, 1, 0.75D, Rectangle@80.0, 0.0<, 81, 1 ê 8<D<,8Hue@0.65, 0.9, 0.75D, Rectangle@80.0, 0.0<, 81 ê 8, 1<D<,8Hue@0.65, 0.6, 0.75D, Rectangle@80.0, 0.0<, 81 ê 2, 1 ê 4<D<,8Hue@0.65, 0.4, 0.75D, Rectangle@80.0, 0.0<, 81 ê 4, 1 ê 2<D<,8AbsolutePointSize@3D, Map@Point, MyNet@4, 1DD< <,8AspectRatio Ø 1, Frame Ø True, Axes Ø None, FrameTicks Ø None,

PlotRange Ø 880.0, 1.0<, 80.0, 1.0<<, GridLines Ø 8vec2, vec2<< D;
Show@GraphicsArray@8g1, g2<DD

From In[10]:=

Figure 3. Visualization of the Ht, m, sL-net property for P0  and P1 , m = 4.

A  modern  task  in  the  theory  of  uniform  distribution  is  the  construction  of
arbitrary Ht, m, sL-nets with small parameters t in large dimensions s.
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‡ Discrepancy
In  the  previous  section,  the  term  equidistributed  point  set  was  used  without
defining  equidistribution.  An  assessment  of  distribution  quality  needs  a  suitable
measure.  The  classical  measure  in  the  theory  of  uniform  distribution  is  discrep-
ancy, which in a certain sense measures the deviation of a point set from an ideal
distribution.

We  will  introduce  a  special  form  of  discrepancy,  the  so-called  star-discrepancy.
Consider a point set P = Hxn Ln=0

N -1 , in the s-dimensional unit cube I = @0, 1Ls . The
star-discrepancy DN

* HPL of P is defined as

(3)DN
*  HPL := sup

JœY *

 D H J, PL, where D H J, PL :=
ƒƒƒƒƒƒƒƒƒ number of xn œ J

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N

- Vol H JL ƒƒƒƒƒƒƒƒƒ,
and Y *  denotes  the class  of  all multidimensional  subintervals  J  of I  of the form
J := ¤i=1

s Ji ,  where  Ji = @0, ui L  and  0 § ui § 1.  Hence,  the  star-discrepancy  is
attained  for  a  (half-open)  subinterval  of  I  with  the  left  corner  in the  origin  (see
Figure  3  for  some  discrete  examples  J = @0, u1 Lä @0, u2 L)  providing  maximal
deviation  of  the  relative  number  of  points  within  the  interval  from  its  volume
VolH JL = ¤i=1

s ui . The number DH J, PL is called local discrepancy.

The  measure  DN
* HPL  may  also  be  seen  as  a  number-theoretical  adaptation  of  a

well-known  goodness-of-fit  test  in  statistics,  the  two-sided  Kolmogorov–
Smirnov  test  that  is  used  to  test  the  hypothesis  that  a  sample  P  stems  from  a
particular continuous probability distribution. In our case, the target distribution
is the uniform distribution on I.

The  computation  of  discrepancy  is  very  time  consuming  with  a  complexity  of
OHN s L  for  N  points  in  the  s-dimensional  unit  cube.  Hence,  an  assessment  of
uniform  distribution  is  usually  achieved  by  theoretical  discrepancy  estimates  or
by an application  of  several  other measures  of  equidistribution,  which,  although
they are easier to compute, are sometimes not that intuitive. 

Furthermore,  every  numerical  application  of  uniformly  distributed  point  sets
works with finite precision numbers.  Therefore,  it is important to apply discrep-
ancy for finite precision subintervals (see Figure 3 for some examples). This leads
to  the  concept  of  discrete  discrepancy  [3],  which  is  defined  in  the  same  way  as  in
equation  (3),  but now Y *  denotes  the class  of  all  (discrete)  subintervals  J  of the
form J = ¤i=1

s Ji , where Ji = @0, ai ê ML, with integers 0 § ai § M . 

The  DiscreteDiscrepancy[p,m]  function  gives  a  list  of  local  discrepancies
DH J, PL  for  all  discrete  intervals  J  with  resolution  M = 2m , m ¥ 2  and  a  given
point set P. To calculate this function, we represent the intervals J  by the list of
endpoints I iÅÅÅÅÅÅÅÅ2m , jÅÅÅÅÅÅÅÅ2m M, 1 § i, j § 2m , and use simple list operations.
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In[15]:= DiscreteDiscrepancy@p_List, m_IntegerD :=
Module@8intervals, func<,
intervals = Table@8i, j< ê 2^m, 8i, 1, 2^m<, 8j, 1, 2^m<D;
intervals = Flatten@intervals, 1D;
func@l_D := Length@Select@p,H#@@1DD < l@@1DD && #@@2DD < l@@2DDL &DD;
Abs@Map@func, intervalsD ê Length@pD -

Map@Apply@Times, #D &, intervalsDDD;

The  following  matrix  shows  the  output  of  DiscreteDiscrepancy[P1,3].  The
value  at  position  Hi, jL  equals  local  discrepancy  DH J, PL  for  the  interval  J  with
endpoints I iÅÅÅÅÅÅÅÅ2m , jÅÅÅÅÅÅÅÅ2m M, 1 § i, j § 2m . 

In[16]:= Example = DiscreteDiscrepancy@MyNet@3, 1D, 3D;
MatrixForm@ Partition@Example, 8DD

Out[17]//MatrixForm=i
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Discrete  discrepancy  is  the  maximum  of  the  matrix,  15ÅÅÅÅÅÅÅ64 .  In  our  example,  the
maximum  is  attained for  two  intervals  J  with  endpoints  ( 5ÅÅÅÅÅ8 , 5ÅÅÅÅÅ8 )  and ( 7ÅÅÅÅÅ8 , 7ÅÅÅÅÅ8 ).  As
one  may  guess,  calculating  DiscreteDiscrepancy[p,m]  in  this  simple  way
becomes  very  difficult  for  increasing  m.  However,  we  can  use  this  function  to
analyze  the  structure  of  local  discrepancy  for  small  point  sets  in  order  to  gain
elementary  information  for  a  subsequent  theoretical  discrepancy  estimation  of
larger  point  sets.  This  very  useful  strategy  allowed  the  author  to  construct  a
method to estimate the star-discrepancy of arbitrary nets Pt  [7].

‡ Visualizations
In  this  section,  we  visualize  the  structure  of  local  discrepancy  DH J, PL  for  our
point  sets Pt , t ¥ 0, for all discrete intervals  J  with resolution M = 2m .  We start
with  a  visualization  in  dimension  two.  Therefore,  we  use  DiscreteDiscrepÖ
ancy[ ]  and  calculate  the  list  of  values DH J, PL  for  all  such  two-dimensional
intervals,  which  are  represented  by  their  endpoints  as  described  earlier.  The
following function simply uses RasterArray[ ] to color the list of local discrepan-
cies.  Small  values  of  DH J, PL  are  colored  in  dark  blue.  The  larger  the  values
become,  the brighter  the coloring.  The brightest  squares  show where  the  maxi-
mum  (and  therefore  the  discrete  discrepancy)  is  attained.  The  explicit  value  is
shown above each plot.
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In[18]:= Visualize2D@p_List, m_IntegerD := Module@ 8mi, ma, result<,
result = DiscreteDiscrepancy@p, mD;
mi = Min@resultD;
ma = Max@resultD;
Graphics@8 RasterArray@Partition@

Map@ RGBColor@#, 0.1 + 0.9 #, 0.6D &,
result ê Hma - miLD, 2^mDD<,

AspectRatio Ø 1, PlotRange Ø All,
PlotLabel Ø StyleForm@TraditionalForm@maDDD D;

Figure  4  shows  Visualize2D[p,m]  for  Pt , t = 0, 1, 2, 3  and  m = 6.  Compared
to Figure 2, these graphics reflect the change of distribution in a more impressive
way.

In[19]:= Show@ GraphicsArray@88Visualize2D@MyNet@6, 0D, 6D, Visualize2D@MyNet@6, 1D, 6D<,8Visualize2D@MyNet@6, 2D, 6D, Visualize2D@MyNet@6, 3D, 6D<<DD
From In[19]:=
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Figure 4. Visualization of local discrepancy for Pt , t = 0, 1, 2, 3 and m = 6.

Figure 5 also includes the points within the graphic for the larger case m = 8 and
t = 0. A comparison of the first graphic in Figures 4 and 5 shows certain self-simi-
larities. The reader is also asked to visualize the cases m = 9, 10.
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In[20]:= g = Graphics@ 8AbsolutePointSize@2D,
Map@Point, 2^8 MyNet@8, 0DD<,

Frame Ø None, AspectRatio Ø 1, Axes Ø None, FrameTicks Ø NoneD;
Show@Visualize2D@ MyNet@8, 0D, 8D, gD

From In[20]:= 711
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
65536

Figure 5. Visualization of local discrepancy of P0  for m = 8.

In  Figure  6,  the  distribution  behavior  of  the  point  sets  is  visualized  in  three
dimensions  as  well.  The  function  Visualize3D[p,m]  generates  a  Graphics3D
object containing cuboids with heights corresponding to DH J, PL. Figures 6 and 7
show the  cases  m = 6, t = 0,  and t = 3.  Two of  the plots  in Figure  4 are  projec-
tions into the x-y plane of Figures 6 and 7.

In[22]:= Visualize3D@p_List, m_IntegerD :=
Module@ 8mi, ma, result, tmp1, tmp2, pos, l, ll<,
l = Table@8i, j< ê 2^m, 8i, 1, 2^m<, 8j, 1, 2^m<D;
l = Flatten@l, 1D;
result = DiscreteDiscrepancy@p, mD;
mi = Min@resultD; ma = Max@resultD;
tmp1 = Hma - miL ê 2^m; tmp2 = Union@resultD;
pos = Table@Flatten@ Position@result, tmp2@@iDDDD,8i, 1, Length@tmp2D< D;
ll =
Table@ 8Flatten@8l@@pos@@iDD@@jDDDD, tmp2@@iDD<D,

Flatten@8l@@pos@@iDD@@jDDDD + 1 ê 2^m, tmp2@@iDD + tmp1<D<,8i, 1, Length@tmp2D<, 8j, 1, Length@pos@@iDDD< D;
Table@ Graphics3D@8RGBColor@Hi - 1L ê Length@llD, Hi - 1L ê Length@llD, 0.7D,

PointSize@0.012D, EdgeForm@Thickness@0.001DD,
Map@Cuboid@#@@1DD, #@@2DDD &, ll@@iDDD<,

Ticks Ø 881<, 80, 1<, 8mi, ma<<,
PlotRange Ø 8mi - 2 tmp1, ma + 2 tmp1<,
Boxed Ø True, BoxRatios Ø 81, 1, 1<,
ViewPoint Ø 8-1.3, -1.4, 1.9<, Lighting Ø False,
Axes Ø TrueD,8i, 1, Length@llD<D D;
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In[25]:= m = 7;
vec1 = Reverse@ Table@ 1 ê 2^i, 8i, 1, m< DD;
vec2 = Reverse@ Table@ 1 ê 3^i, 8i, 1, m< DD;
l = Range@2^mD;
l1 = Map@IntegerDigits@#, 2, mD &, lD.vec1;
l2 = Map@IntegerDigits@#, 3, mD &, lD.vec2;
hal = Transpose@8l1, l2<D;
g = Graphics@ 8PointSize@0.02D, Map@Point, halD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None,
FrameTicks Ø None, PlotRegion Ø 880, 0.85<, 80, 0.85<<D;

Show@GraphicsArray@8g, Visualize2D@hal, mD<, GraphicsSpacing Ø 0DD
From In[25]:= 3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
128

Figure 8. Local discrepancy of a Halton sequence Hm = 7L.
Lattices  are  essentially  different  from  the nets  shown in earlier  sections.  Special
lattices  are  obtained  if  we  produce  all  “overlapping”  vectors  (xn , xn+1 )  from  a
point set P = Hxn Ln=0

M-1 , where the numbers xn  are generated with xn := yn ê M  and
yn  via  the  recurrence  yn+1 ª a yn + b Hmod ML.  The  parameters  a  and  b,
0 § a, b < M,  and the starting value y0  have  to fulfill  certain conditions  in order
to  get  the  full  period  M  for  the  recurrence  (see  [3,  8]).  The  parameter  a  is
responsible  for  the  distribution  quality  of  the  lattice.  If  a  is  chosen  well,  the
vector g = H1, aL is called a good lattice point, because the corresponding lattice is
generated from multiples of g.  In Figures 9 and 10 the modulus M = 27  and the
additive  constant  b = 1.  In  Figure  9  we  use  the  bad  parameter  a = 125  and  in
Figure 10 the good parameter a = 117.
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In[34]:= m = 7;
f@x_D := Mod@125 x + 1, 2^mD;
gen = NestList@f, 0, 2^mD;
gen = Partition@gen ê 2^m, 2, 1D;
g = Graphics@ 8PointSize@0.02D, Map@Point, genD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None,
FrameTicks Ø None, PlotRegion Ø 880, 0.85<, 80, 0.85<<D;

Show@GraphicsArray@8g, Visualize2D@gen, mD<, GraphicsSpacing Ø 0 DD
From In[34]:= 331
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4096

Figure 9. Local discrepancy of bad lattice points with M = 27 and a = 125.

In[40]:= m = 7;
f@x_D := Mod@117 x + 1, 2^mD;
gen = NestList@f, 0, 2^mD;
gen = Partition@gen ê 2^m, 2, 1D;
g = Graphics@ 8PointSize@0.02D, Map@Point, genD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None, FrameTicks Ø None,
PlotRegion Ø 880, 0.85<, 80, 0.85<<D;

Show@GraphicsArray@8g, Visualize2D@gen, mD<,
GraphicsSpacing Ø 0DD

From In[40]:= 95
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4096

Figure 10. Local discrepancy of good lattice points with M = 27 and a = 117.
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The  weak  distribution  for  a = 125  is  clearly  seen  in  the  visualization  of  local
discrepancy.  The  good  lattice  is  more  dispersed,  like  Figure  5.  The  reader  is
asked to try to compute the three-dimensional visualization of the bad lattice.

There is another important application of such lattices.  The modular generation
method yields  a classical  method for the generation  of (pseudo-)  random numbers.
If  one  uses  only  a  small  sample  of  numbers  from  the  previous  recurrence  with
large modulus M  (sample size lower than the square root of modulus M  recom-
mended), then the numbers behave like “real” random numbers in many applica-
tions.  The  generation  method  is  called  the  linear  congruential  generator  (LCG).
Figure 11 visualizes a sample of N = 26  numbers from a widely used LCG called
the  “Minimal  Standard”  generator  (M = 231 - 1,  a = 16807,  b = 0)  [9]  (for
further references see [10]).

In[46]:= m = 6;
f@x_D := Mod@16807 x, 2^31 - 1D;
gen = NestList@f, 1, 2^mD;
gen = Partition@gen ê H2^31 - 1L, 2, 1D;
g = Graphics@ 8PointSize@0.02D, Map@Point, genD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None,
FrameTicks Ø None, PlotRegion Ø 880, 0.85<, 80, 0.85<<D;

Show@GraphicsArray@8g, Visualize2D@gen, mD<,
GraphicsSpacing Ø 0DD

From In[46]:= 89
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1024

Figure  11.  Local  discrepancy  of  a  sample  from  the  Minimal  Standard  random  number
generator.

Linear congruential pseudorandom number generators have often been criticized
for  the  underlying  lattice  structures  they  produce  if  all  overlapping  vectors  are
considered.  Therefore,  several  other  (nonlinear)  generators  have  been  proposed
where  overlapping  vectors  generated  from  such  random  numbers  are  not  con-
tained in lattices (or small unions of lattices). Thus, we consider a “baby” version
and  a  more  recent  nonlinear  generator,  called  the  explicit  inversive  congruential
generator  (EICG),  defined  by  Eichenauer-Herrmann  [11].  The  reader  is  asked to
recover  the  modular  generation  method  by means  of  the  following  Mathematica
implementation.  From  the  baby  generator  with  modulus  M = 27 - 1,  we  pro-
duce  all  possible  overlapping  vectors  (Figure  12),  and  from  a  large  EICG  with
modulus  M = 231 - 1  and  the  same  multiplier  117,  we  generate  a  sample  of  27

numbers (Figure 13).
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and  a  more  recent  nonlinear  generator,  called  the  explicit  inversive  congruential
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modulus  M = 231 - 1  and  the  same  multiplier  117,  we  generate  a  sample  of  27

numbers (Figure 13).

In[52]:= m = 7;
p = 2^7 - 1;
f@n_D := PowerMod@117 n, p - 2, pD;
gen = Table@f@nD, 8n, 1, 2^m + 1<D;
gen = Partition@gen ê H2^7 - 1L, 2, 1D;
g = Graphics@ 8PointSize@0.02D, Map@Point, genD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None,
FrameTicks Ø None, PlotRegion Ø 880, 0.85<, 80, 0.85<<D;

Show@GraphicsArray@8g, Visualize2D@gen, mD<, GraphicsSpacing Ø 0DD
From In[52]:= 977

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
16384

Figure 12. Local discrepancy of a baby EICG with M = 27 - 1 and a = 117.
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In[59]:= m = 7;
p = 2^31 - 1;
f@n_D := PowerMod@117 n, p - 2, pD;
gen = Table@f@nD, 8n, 1, 2^m + 1<D;
gen = Partition@gen ê H2^31 - 1L, 2, 1D;
g = Graphics@ 8PointSize@0.02D, Map@Point, genD<,

Frame Ø True, AspectRatio Ø 1, Axes Ø None,
FrameTicks Ø None, PlotRegion Ø 880, 0.85<, 80, 0.85<<D;

Show@GraphicsArray@8g, Visualize2D@gen, mD<, GraphicsSpacing Ø 0DD
From In[59]:= 809

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8192

Figure  13.  Local  discrepancy  of  a  small  sample  of  an  EICG  with  M = 231 - 1  and
a = 117.

‡ Summary
In  this  article  we  showed  some  basic  principles  from  the  theory  of  uniform
distribution of sequences modulo one using Mathematica  functions  and graphics.
The  functions  can  easily  be  used  or  extended  for  introductory  lessons  in  this
field. The graphical representation of the structural behavior of local discrepancy
provides  additional  information  on  the  behavior  of  discrepancy  for  different
point  sets  and  impressive  images.  These  images  may  also  be  used  to  motivate
further distribution measures such as the L2 -discrepancy.
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