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EFFICIENT LATTICE ASSESSMENT
FOR LCG AND GLP PARAMETER SEARCHES

KARL ENTACHER, THOMAS SCHELL, AND ANDREAS UHL

Abstract. In the present paper we show how to speed up lattice parame-
ter searches for Monte Carlo and quasi–Monte Carlo node sets. The classical
measure for such parameter searches is the spectral test which is based on a
calculation of the shortest nonzero vector in a lattice. Instead of the short-
est vector we apply an approximation given by the LLL algorithm for lattice
basis reduction. We empirically demonstrate the speed-up and the quality
loss obtained by the LLL reduction, and we present important applications for
parameter selections.

1. Introduction

Quality assessments of integer lattices play an important role in the development
of efficient node sets for the approximate calculation of high dimensional integrals
using Monte Carlo (MC) and quasi–Monte Carlo (QMC) methods.

Consider the standard domain Is := [0, 1[s in dimension s ≥ 2, a point (node)
set P = {~x1, . . . , ~xN} in Is, N ∈ N, and a function f : Is −→ R. The (quasi)
Monte Carlo approximation of an integral E(f) :=

∫
Is
f(~x) d~x is computed by the

average of the integrand over the point set P ,

SN (f, P ) :=
1
N

N∑
n=1

f(~xn).(1.1)

Integer lattices with (in a certain sense) optimal resolution or distribution prop-
erty are classical node sets for QMC integration. Such lattice rules (or lattice meth-
ods) yield the approximation error bound |E(f)−SN(f, P )|=O((logN)s−1/N). To
obtain this excellent error behavior it is necessary to provide lattices that are opti-
mally chosen with respect to certain measures of uniform distribution [18, 30, 38].
An important candidate for such a measure is the spectral test [12, 19, 24], which
allows a very efficient and effective quality analysis for lattices up to high dimen-
sions.

Lattice assessments are also used to get reliable linear random number generators
to produce node sets for MC integration, the counterpart of QMC. This is due to
the fact that different vectors from linear random numbers are contained in lattice
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structures. An analysis of the underlying lattices provides generators with optimal
distribution and correlation quality. In comparison to QMC, for the application of
random numbers in MC integration, we theoretically may expect an approximation
error O(1/

√
N), see [3, 30] for details. The QMC error above is asymptotically bet-

ter than the MC error, but the latter has the advantage of dimension-independence.
However, for explicit applications, the real integration error obviously depends on
several additional factors, such as the regularity of the integrand, the constants in
the O term, and the dimension s or the maximally computable sample size N . For
detailed discussions and references on MC and QMC see the monographs [17, 30, 38]
and the review articles [3, 34]. For recent results and applications see the series of
conference proceedings [32, 31, 33], and also the web-sites http://www.mcqmc.org/
and http://random.mat.sbg.ac.at/links/.

Usually little is known about the regularity of the integrand. Therefore it is
important to provide well chosen node sets for MC and QMC. The selection of
“good” lattice parameters for the application of lattice rules in QMC, and also for
the development of reliable linear random number generators for MC, demands a
huge computational effort. It is highly desirable that such lattices should, besides
distribution quality, fulfill several additional requirements, such as projection or
sub-lattice stability [11, 21, 25, 26]. Even using the fast spectral test it is very hard
and sometimes practically impossible to reach all the desired quality requirements
[26].

In the present paper we show how to speed up lattice parameter searches for
QMC and MC node sets with negligible loss of quality. The spectral test is based
on a calculation of the shortest nonzero vector in a lattice [19], which is in general
not feasible in polynomial time for increasing dimension. The effort to determine
such a shortest vector depends heavily on the given “input” basis of the lattice.
In many areas in scientific computing it suffices to apply an approximation of the
shortest nonzero vector, which can be obtained by the well known LLL algorithm
[6, 27, 35], for example. We apply the latter algorithm to obtain a modified spectral
test which is defined by the shortest vector of the LLL reduced lattice basis. The
speed-up and the quality loss obtained by the LLL reduction in our application is
empirically demonstrated in Section 3. In Section 4 we present important applica-
tions for parameter selections. The following section gives introductory notations
and concepts.

2. Application and analysis of lattices for MC and QMC

2.1. Monte Carlo. Classical node sets for MC methods are obtained by linear
congruential random number generators (LCGs). LCGs have been applied exten-
sively for a long time, and they are the most common random number generators.
But we have to mention that recent versions use implementations based on a com-
bination of LCGs or multiple recursive generators (MRGs) to get improved quality
and huge periods. For many classical and recent examples, see [10, 22]. The
definitions and basic properties of linear random number generators are contained
in [15, 19, 20, 30]. LCGs are generated by means of the recursion yn+1 ≡
ayn + b(mod m), n ≥ 0, and by an initial seed y0, a 6= 1, b, y0 ∈ Zm (the least
residue system modulo m). Normalized PRNs in [0, 1[ are obtained by the trans-
formation xn := yn/m. We consider only multiplicative LCGs (b = 0) where the
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modulus m is prime1 and the multiplier a is a primitive root modulo m. Therefore
the recursion above, with seed y0 6= 0, produces a sequence of integers in Zm with
maximal period m− 1.

A central property of linear congruential generators in general (this holds also
for combined LCGs and for MRGs), is that arbitrary s-dimensional vectors

~xi := (xi, xi+j1 , . . . , xi+js−1),(2.1)

with fixed lags j1, . . . , js−1, are contained in certain grid structures [24].
For j1 = 1, . . . , js−1 = s − 1, the case which has been studied in detail, these

vectors are called overlapping s-tuples. In our case, for multiplicative LCGs, the
latter s-tuples produce intersections of a lattice Ls(a,m) with the s-dimensional
unit cube Is, where

Ls(a,m) :=

{
s∑
i=1

ki ·~bi : ki ∈ Z
}

(2.2)

denotes a s-dimensional lattice with lattice basis

~b1 = (1, a, . . . , as−1)/m, ~b2 = (0, 1, 0, . . . , 0), . . . ,~bs = (0, 0, . . . , 0, 1),(2.3)

see [15, 19, 20, 29, 30, 36].
In practice, usually nonoverlapping s-tuples

~xi := (xis, xis+1, . . . , xis+s−1), i ≥ 0,(2.4)

are used to produce “independent” random points in Is. If gcd(s,m− 1) = 1, then
all possible nonoverlapping tuples ~xi originate in the same lattice as above. Note
that for the computation of all nonoverlapping s-tuples with an LCG one has to
generate at least s times the period. If gcd(s,m − 1) > 1, these vectors produce
proper subsets of the lattice Ls(a,N) which need not have a pure lattice structure
in general [1]. A lattice is obtained if one considers the union of all possible subsets
produced by such tuples.

Essentially different lattices Ls(a′,m′) are obtained for vectors (2.1) with arbi-
trary lags which occur if, for example, lagged subsequences from the output of an
LCG are used [11, 24].

2.2. Quasi–Monte Carlo. A classical method for QMC uses the intersection of
the full2 lattice Ls(a,m), m = N , with the s-dimensional unit cube Is as node set
for the calculation of the approximation (1.1) of the integral. The application of
Ls(a,m) is called the rank-1 lattice rule or the Korobov lattice rule [18, 25, 30, 38].
The quality of Ls(a,m) depends on the generating vector ~b1 in (2.3). For well
chosen vectors ~b1, the Korobov lattice rule is also called method of “good lattice
points” (GLPs). More general lattice rules are for example obtained for different
vectors in a basis (2.3).

1Note that power-of-two LCGs suffer from strong regularities in the binary representation of
the generated numbers, i.e., the least significant bits of these numbers exhibit small periods, see
[19]. Hence, such generators should not be used in stochastic simulations.

2 Note that the difference of MC and QMC in our case lies in the fact that for MC one may
use a large modulus m and only a “random” part of the lattice Ls(a,m), while for QMC one may
apply the sample size N as modulus and therefore the full lattice Ls(a,N).
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2.3. Lattice assessment. The coarseness of the lattice Ls(a,m) may change dra-
matically if either the dimension s or the multiplier a is varied. To get reliable
linear random number generators for a large class of applications, it is necessary
to assess the quality of the several lattices produced by various tuple constructions
described above. Furthermore, the selection of “good” lattices Ls(a,m) provides
excellent QMC node sets as well.

The spectral test (geometric version) is a classical measure for the quality of
s-dimensional lattices Ls. Specifically, this test determines the maximum distance
ds between adjacent hyperplanes, taken over all families of parallel hyperplanes
which contain all points of the lattice. The smaller ds, the more regular is the point
structure.

Widely used is a normalized spectral test Ss := d∗s/ds, 2 ≤ s ≤ 8, for which
0 ≤ Ss ≤ 1 (values near 1 imply a good lattice structure). The constants d∗s are
absolute lower bounds on ds, see [19, p. 105] and [15, Sect. 7.7]. L’Ecuyer [23]
used also certain lower bounds d∗s for dimensions s > 8 in order to compute Ss for
arbitrary dimensions.

The algorithm to calculate the spectral test is based on the dual lattice3 of Ls,
since the maximal distance between adjacent hyperplanes ds is equal to the recipro-
cal of the length of the shortest nonzero vector of the dual lattice [8, 19]. Historically
this test is due to Coveyou and MacPherson [7], who used multivariate Fourier anal-
ysis to study the quality of LCGs. An efficient implementation of the spectral test
for arbitrary multiple recursive generators is given in [24]. A Mathematica package
for various spectral test calculations and the C-code of our LLL-spectral test are
available from the server http://www.fh-sbg.ac.at/~entacher/.

3. Spectral test approximation with the LLL algorithm

In this section we want to demonstrate the effects which appear if the shortest
nonzero vector in the spectral test calculation is replaced by an approximation
obtained by the Lenstra Lenstra Lovász (LLL) basis reduction algorithm [6, 27, 35].
The calculation of the shortest nonzero vectors in a lattice is performed by variants
of the Fincke-Pohst algorithm which are in general not polynomial in dimension
[14]. Applying the LLL algorithm, an approximation of the shortest vector can be
calculated in polynomial time [6, 35, 39]. For recent discussions on the complexity
of lattice problems see [2, 4], and also other papers from [9].

For a given basis B = {~b1, . . . ,~bs} of a lattice Ls, the LLL algorithm finds a new
basis B′ = {~b′1, . . . ,~b′s}, with4

||~b′1|| ≤ 2
s−1

2 · ||~v||,(3.1)

where ~b′1 denotes the shortest nonzero vector in B, ||.|| the euclidean norm, and ~v
an arbitrary nonzero vector in the lattice Ls. Therefore the latter inequality also
holds for a shortest vector ~v1 in Ls. Cohen [6] quotes: “We see that the vector ~b′1
in a reduced basis is, in a very precise sense, not too far from being the shortest
nonzero vector of Ls. In fact, it often is the shortest, and when it is not, one can,
most of the time, work with ~b′1 instead of the actual shortest vector”. Moreover,
Pohst [35] supplements: “Examples show that there exist lattices with LLL reduced
bases {~b′1, . . . , ~b′s} with ||~b′1||2 ≥ (4/3)s−2||~v1||2. These observations certainly do

3For the definition of the dual lattice see subsection 4.1.
4 Further properties of LLL reduced bases are given in [6].
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not favour applications of LLL reduced bases. However, the results in practice are
in general much better than the worst case estimates.”

In the following we demonstrate that the above statements on the good behavior
in practice apply also for the spectral test for parameter selection of MC and QMC
node sets. Therefore, in most cases, it is sufficient to apply the LLL reduction
instead of the calculation of the shortest vector.

Consider our lattices Ls := Ls(a, p), p prime, as defined in Section 2. The LLL
spectral test d′s of Ls will obviously be defined as the reciprocal of the length of the
first vector of the LLL reduced dual lattice basis of Ls. Similarly to subsection 2.3 we
may also use a normalized LLL spectral test S′s := d∗s/d

′
s, s ≥ 2. Further we will use

the notation M ′j := min2≤s≤j S
′
s, which in the original form Mj := min2≤s≤j Ss has

often been applied for LCG parameter searches [15, 23]. For fixed prime numbers
p we will write d′s(a, p), S

′
s(a, p) and M ′j(a, p) for the corresponding figures of merit

for the lattice Ls(a, p).
To exhibit different behavior of the spectral test and its LLL version for our

lattices we considered the nearest prime numbers pj to 2j , 9 ≤ j ≤ 28, which are
for example {29 − 3, 210 − 3, 211 + 5, . . . } and, for each of these primes, the set of
primitive roots a modulo pj . Note that assessments of lattices Ls(a, p) for MC node
set selection are in general restricted to the set A of all primitive roots a modulo p
since for such primitve roots the corresponding LCG guarantees maximal period.
There are φ(p − 1) primitive roots where φ denotes the Euler totient function.
Further, there are certain lattices Ls(a, p) for a ∈ A which are equivalent with
respect to the spectral test, and therefore it suffices to assess Ls(a, p) for a number
φ(p− 1)/2 of primitive roots a [15, 23].

Figure 1 shows relative frequencies of the occurrence of different values ofM8(a, p)
and M ′8(a, p) (left graphics) and ds(a, p) and d′s(a, p), 2 ≤ s ≤ 8 (right graphics).
For prime numbers pj , j ≤ 18, we considered all relevant primitive roots modulo pj,
and for pj with 19 ≤ j ≤ 28, we have randomly chosen a set of 215 primitive roots
a. The relative number of different values ds(a, p) and d′s(a, p), 2 ≤ s ≤ 8, is very
low (maximum about three percent) but increasing with the dimension. However
for the measures5 M8 and M ′8 the frequencies are significantly lower.

In Figure 2 we exhibit the magnitude of the differences of the measures. The left
graphic shows the maximal values maxa(ds(a, p)/d′s(a, p))2 for each prime number
pj, 12 ≤ j ≤ 28, and dimension 2 ≤ s ≤ 8. Note that almost all values are
between one and two.6 There are some outliers (the largest one equals 7), which
for dimension s = 7 is still clearly lower than the theoretical bound 2(s−1) given in
(3.1). The right graphic shows the mean values of the absolute differences between
Ss(a, p) and S′s(a, p).

From these empirical tests we can confirm the statements of Cohen and Pohst
above, i.e., for our applications the vector ~b′1 of the LLL reduced dual basis of
Ls(a, b) is very often the shortest nonzero vector, and if not the results are much
better than the theoretical bounds. Our comparisons have been calculated using
a Mathematica implementation of the Fincke-Pohst algorithm by Wilberd van der

5We have chosen M8 since the normalization constants d∗s used for the normalized spectral
test are best possible for dimensions 2 ≤ s ≤ 8, which is not the case for larger dimensions [23].

6 For dimension s = 2 all values are equal to one, which means that in all cases in dimension
two the LLL reduction already provides the shortest vector, i.e., ds = d′s. The latter property can
also be seen from the right graphics in Figures 1 and 2.
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Figure 1. Relative frequencies of the occurrence of different val-
ues of M8(a, p) and M ′8(a, p) (left graphics) and ds(a, p) and
d′s(a, p), 2 ≤ s ≤ 8 (right graphics).
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Figure 2. The maximal values maxa(ds(a)/d′s(a))2 for each prime
number pj , 12 ≤ j ≤ 28, and dimension 2 ≤ s ≤ 8 (left graphics),
and the mean values of the absolute differences of Ss(a) and S′s(a)
(right graphics).

Kallen, University of Utrecht, NL,7 which is based on a previous LLL reduction.
Figure 3 exhibits the time performance of our calculations. The figure displays8

the mean values of the time used for the calculation of ds(a, p) divided by the
means for d′s(a, p); the means are taken over 64 different primitive roots a for
each prime p. The LLL reduction is for small dimensions about a factor 5 faster

7 http://www.math.ruu.nl/people/vdkallen/kallen.html.
8Note that for the generation of the timings we also used much larger primes near 2j , 16 ≤

j ≤ 64, and larger dimensions s.
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Figure 3. Mean values of the time spent for ds(a, p) divided by
the means for d′s(a, p), the means being taken over 64 different
primitive roots a for each prime p.

Table 1. Multipliers selected via the spectral test from [23] and
our results obtained by a random search using LLL reduction.

p a [23] M8 [23] a M ′8 = M8

227 − 39 = 134217689 45576512 0.75874 45576512 0.75874

228 − 57 = 268435399 150873839 0.74215 150873839 0.74215

229 − 3 = 536870909 520332806 0.75238 435136037 0.75356

230 − 35 = 1073741789 771645345 0.74881 325079677 0.75432

231 − 1 = 2147483647 1583458089 0.72771 598753959 0.73435

117879879 0.74309

629824009 0.74880

1355089539 0.74972

232 − 5 = 4294967291 1588635695 0.74530 3265168268 0.74870

233 − 9 = 8589934583 7425194315 0.73666 8137022074 0.75316

234 − 41 = 17179869143 5295517759 0.73607 10771374442 0.73899

1491142424 0.75157

235 − 31 = 34359738337 3124199165 0.74740 23314821278 0.75022

236 − 5 = 68719476731 49865143810 0.72011 24365995562 0.75969

46865245638 0.76825

237 − 25 = 137438953447 76886758244 0.73284 64192466011 0.73997

than the calculation of the shortest vector, but the speed-up in our Mathematica
implementation decreases for increasing dimension and prime size.

We further used Victor Shoup’s C++ implementation of the LLL algorithm
[37] and performed the same parameter searches for optimal multipliers with re-
spect to M8 which were carried out in [23, Table 2]. For the exhaustive searches
in the latter paper which were computed for prime numbers p ∈ {28 − 5, 29 −
3, 210− 3, . . . , 226− 5} we got exactly the same multipliers with respect to M ′8 and
equal values for the measures M ′8 and M8. For the random searches for primes
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p ∈ {227 − 39, 228 − 57, . . . , 237 − 25}, for example, we easily obtained improved
results with our algorithm. Table 1 shows the results given in [23, Table 2] and our
multipliers selected with LLL for the latter primes.

4. Applications

4.1. Projection stable lattice rules. In their recent papers [25, 26],
C. Lemieux and P. L’Ecuyer showed that for high quality lattice rules, it is not
enough to assess only the underlying lattice Ls. For certain subsets of coordinates
I = {i1, . . . , it} ⊂ {1, . . . , s}, the projections9 Ls(I) of Ls over the t-dimensional
subspace determined by I should be assessed as well, for many applications. Lat-
tice rules Ls(a, p) which for example have been selected via M8 may have poor
projection quality, for examples see the papers above. Selection of lattice rules
including a quality assessment of a large set of projections may be computationally
very expensive. To provide a compromise between computational cost and projec-
tion quality Lemieux and L’Ecuyer [26] proposed the following worst case figure of
merit for lattice assessments:

Mj,k := min
[

min
2≤s≤j

d∗s
ds
, min
I∈S(k)

d∗|I|
dI

]
,(4.1)

where S(k) := {I = {i1, . . . it} : |I| ≤ k, i1 = 1 and it ≤ j}. For k = 1 one has
Mj,k = Mj . The term dI in the definition above denotes the spectral test for the
projection Ls(I), which, in analogy to subsection 2.3, is the reciprocal of the length
of a shortest nonzero vector of the dual lattice L∗s(I). The dual lattice of Ls(I) is
defined as L∗s(I) := {~w ∈ Rs : ~w · ~v ∈ Z for all ~v ∈ Ls(I)}. The dual of a given
lattice basis B = {~b1, . . . ,~bs} is provided by the set of vectors B∗ = {~b∗1, . . . ,~b∗s}
such that ~bi ·~b∗j = δi,j , with δi,j = 1 if i = j and δi,j = 0 otherwise.

Even for the latter measure it is hard to perform searches for optimal multipliers
for reasonable p, j and k. We applied the measure Mj,k in its faster LLL version
M ′j,k, which means that the shortest vectors are replaced by their approximations
given by the LLL reduction. Table 2 shows examples of exhaustive search results for
the best multipliers a that are primitive roots modulo p, for a given prime p, with
j = 8 and k ≤ 4 and j = 16 and k ≤ 8. The timings (∼ 14 days of CPU-time) in the
table were achieved using a SGI Power Challenge, equipped with 20 MIPS R10000
processors at 194 MHz running IRIX 6.5., and our LLL implementation [37]. Note
that the magnitude of our prime numbers p is much larger in comparison to the
results in [25, 26] (the latter authors used primes lower than 217). We also carried
out the same search as in [26, Table 1] and verified the results given there with our
measure M ′8,k.

4.2. Selection of LCG parameters with subsequence stability. Another
computationally expensive application of lattice assessments appears for param-
eter selections of linear random number generators with splitting stability. For
several applications of random numbers it is common practice to split the output
of an RNG into subsequences. Such subsequences may occur in special simula-
tion setups, in transformation methods for nonuniform random numbers [28] or as

9 Note that for Korobov lattice rules the projections are lattices as well. Moreover, each
projection contains the same number of points as the lattice itself (if gcd(a, p) = 1), and for
special sets of indices I such projections are identical. The latter properties are called projection-
regularity and dimension-stationarity, for details see [25], [26].
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Table 2. Exhaustive search results for optimal multiplier a with
respect to the figures of merit M ′16,k, k = 1, 2, 4, 8, and M ′8,k, k =
1, 2, 3, 4.

p k a M ′16,k Time [s]

217 − 1 1 29223 0.67170 189

2 22865 0.58550 190

4 73088 0.24606 248

8 55810 0.24206 1292

218 − 5 1 195669 0.69174 766

2 107017 0.59653 767

4 81970 0.25478 957

8 203909 0.24084 3656

219 − 1 1 157781 0.67421 842

2 303495 0.58879 841

4 117294 0.25579 1050

8 503284 0.23799 4355

220 − 3 1 246298 0.66738 1728

2 795969 0.62016 1746

4 462565 0.25738 2100

8 50992 0.23811 5877

221 − 9 1 1043187 0.68608 6767

2 787493 0.62991 6768

4 847810 0.26608 7979

8 585470 0.24606 20359

222 − 3 1 2040406 0.67819 6369

2 2088505 0.61795 6375

4 408602 0.26711 7382

8 3728072 0.23208 21615

223 − 15 1 3523955 0.69515 28804

2 6033416 0.62230 28823

4 7288204 0.25817 33510

8 516463 0.23541 53216

224 − 3 1 9939730 0.67283 37418

2 12056378 0.62017 37452

4 8036898 0.25713 43349

8 8226178 0.23096 106800

225 − 39 1 31482291 0.68815 116122

2 14199480 0.62548 116177

4 13305631 0.26029 133163

8 21798615 0.23281 302623

k a M ′8,k Time [s]

1 43165 0.70941 21

2 52344 0.66695 21

3 38429 0.47986 23

4 9290 0.41693 25

1 166972 0.72539 85

2 134632 0.70916 85

3 72153 0.50017 89

4 79719 0.43179 99

1 6371 0.72493 93

2 308445 0.67948 92

3 429897 0.53103 95

4 195267 0.42274 108

1 380985 0.71807 192

2 118096 0.67348 192

3 325952 0.50054 199

4 1026371 0.42291 218

1 360889 0.72537 733

2 109078 0.68149 734

3 1518745 0.54932 748

4 1236628 0.46299 818

1 1406151 0.72226 693

2 3060643 0.67819 693

3 4036460 0.53257 709

4 2059718 0.43735 771

1 653276 0.73407 3087

2 4725434 0.68340 3096

3 1235903 0.53696 3145

4 4071685 0.46114 3382

1 10354078 0.74477 3991

2 4676419 0.70711 3986

3 9820243 0.54899 4027

4 7799995 0.45628 4341

1 22119140 0.76177 12332

2 26579378 0.71883 12342

3 26593451 0.58448 12442

4 6529775 0.46849 13203

methods to obtain parallel streams of pseudorandom numbers for parallel and dis-
tributed simulation [5, 11, 20]. In the case of linear RNGs it frequently occurs that
the distribution quality of subsequences is very bad [10, 13, 16, 21]. The latter is
due to the fact that overlapping or nonoverlapping s-dimensional vectors generated
from a single subsequence stream from an LCG are contained in different lattices.
Consider for example an LCG with modulus p and multiplier a. An analysis of the
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Table 3. Random search for LCG parameters a, p with subse-
quence quality.

p a M ′ Time [h]
261 − 1 576499412011439685 0.300603

1470535122213743586 0.310978
273635001254884560 0.313225 670

264 − 59 1812254979190146906 0.295821
12392816392420730400 0.297236
3401048658419419339 0.316644 1003

underlying lattice Ls(a, p), for certain dimensions s, provides a distribution and
correlation assessment of the generator’s output stream.

If we also want to assess correlations within and between leaped-subsequences
of the generator’s output with step size k ≥ 2, then we also have to analyze the
lattices Ls(ak (mod p), p); for details see [11, 21]. If one, for example, wants to
provide LCG parameters which are also well chosen with respect to subsequence
behavior for several step sizes k, then a large set of lattices has to be assessed,
which obviously requires a considerable computational effort.

As an example, we carried out a random search for multipliers a where the
parameters a itself were assessed using the lattice Ls(a, p) and measure M ′24(a, p)
and additionally the subsequence-lattices Ls(ak (mod p), p) were analyzed using
M ′(k) := M ′8(ak (mod p), p) for 2 ≤ k ≤ 32, and also for k ∈ {2j : 6 ≤ j ≤ 37}.
Therefore we searched for parameters of LCGs with reliable subsequence behavior
for several step-sizes k. The random search was carried out using the minimum
M ′ := minkM ′(k) as quality criterion, for prime numbers p1 = 261 − 1 and p2 =
264 − 59. Table 3 reports the best three multipliers a found for each prime. The
CPU-hours given in the table were spent for the entire searches using the SGI Power
Challenge mentioned before (18 processors used for p1 and 19 for p2).

5. Conclusion

The spectral test is a classical measure for the assessment of lattices as node
sets for Monte Carlo and also for quasi–Monte Carlo methods. The latter test is
based on the calculation of the shortest nonzero vector in a lattice, which is carried
out by the Fincke-Pohst algorithm. Selection of reliable parameters of such lattices
using the spectral test requires considerable computational effort. Therefore, we
suggest speeding up such parameter searches by replacing the calculation of the
shortest vector by an approximation provided by the well known LLL algorithm for
lattice basis reduction, a strategy which is successfully applied in many other areas
in scientific computing. We empirically demonstrate that for our applications the
LLL algorithm in most of the cases already yields the shortest nonzero vector and, if
not, the approximation quality is much better than the theoretical bounds. Perhaps
it may be possible to give a theoretical verification of our empirical findings for the
special form of our lattices, but this will be a subject for further investigation.
We applied the LLL spectral test for important parameter selection strategies and
therefore demonstrated the power of our approach.
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