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Discrepancy estimates based on Haar functions
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Abstract

We present a technique to estimate the star-discrepancy of (t, m, s)-nets using generalized Haar function systems
and apply this technique to obtain upper bounds for the star-discrepancy of special digital (t, m, s)-nets in base 2
and dimensions = 2. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Niederreiter [12,14] has developed different methods to estimate the star-discrepancy of (t, m, s)-nets
in baseb. The proofs use the general definition of these nets and combinatorial methods.

In this paper we present a technique to estimate the star-discrepancy of (t, m, s)-nets using generalized
Haar function systems. The basis of this technique is the inequality of Erdös-Turán-Koksma for the Haar
function system shown in Hellekalek [7]. The ‘raw form’ of this inequality ([7], Theorem 3.4) provides an
upper bound of the (star) discrepancy of a point setP = (xxxn)

N−1
n=0 in thes-dimensional unit cube [0, 1[s ,

s ≥ 1, in terms of Weyl sums for Haar systems. Estimation of these Weyl sums provides an interesting
method to determine bounds of the star-discrepancy of (t, m, s)-nets.

We apply the latter technique to obtain improved upper bounds for the star-discrepancy of special digital
(t, m, s)-nets in base 2 and in dimensions = 2. Our method will further lead us to the exact determination
of the discrete discrepancy which is the natural measure of equidistribution for point sets with finite
precision such as digital (t, m, s)-nets. Advantages and drawbacks of the technique are discussed.

Definition 1. LetP = (xxxn)
N−1
n=0 be a point set in [0, 1[s . The star-discrepancyD∗

N(P) of P is defined as

D∗
N(P) := sup

J∈J ∗

∣∣∣∣ 1

N
· #{n : xxxn ∈ J, 0 ≤ n < N} − λs(J )

∣∣∣∣ , (1)
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whereJ ∗ denotes the class of all subintervalsJ of [0, 1[s of the formJ = 5s
i=1[0, ui [, 0 ≤ ui ≤ 1,

1 ≤ i ≤ s, #M denotes the number of elements of a setM andλs the Lebesgue measure on [0, 1[s .

If we definefJ (xxx) := 1J (xxx) − λs(J ),xxx ∈ [0, 1[s , with the characteristic function1J , we get

D∗
N(P) = sup

J∈J ∗
|RN(fJ ,P)| whereRN(fJ ,P) := 1

N

N−1∑
n=0

fJ (xxxn). (2)

Note thatRN(fJ ,P) equals the Monte Carlo approximation of
∫

[0,1[s fJ dλs .
The concept of (t, m, s)-nets in base 2 was introduced by Sobol’ [17]. Niederreiter has extended this

idea considerably. He has introduced arbitrary bases, efficient construction methods for such point sets
and a comprehensive theory, see the monograph [14] and the recent survey [16].

Definition 2. Let 0 ≤ t ≤ m andb ≥ 2 be integers. A (t, m, s)-net in baseb is a point setP consisting
of bm points in [0, 1[s such that every elementary intervalI in baseb with volume λs(I ) = bt−m

contains exactlybt points ofP. Note that such an elementary intervalI in baseb, by definition, equals
I = ∏s

i=1[ai/b
gi , (ai + 1)/bgi [, whereai , gi ∈ ZZZ, gi ≥ 0 and 0≤ ai ≤ bgi for 1 ≤ i ≤ s.

2. Generalized Haar function systems

In the following we fix an arbitrary integer baseb ≥ 2. For the notations and definitions of generalized
Haar functions relative to baseb and further applications, see [1,3,6,7]. In this section we recall the basic
notations.

For an integerk ≥ 0 and an arbitrary numberx ∈ [0, 1[, letk = ∑∞
j=0kjb

j andx = ∑∞
j=0xjb

−j−1, kj ,

xj ∈ {0, 1, . . . , b − 1}, be theb-adic expansions ofk andx in baseb. For g ∈ NNN we definek(g) :=∑g−1
j=0kjb

j andx(g) := ∑g−1
j=0xjb

−j−1. Further letk(0) := 0 andx(0) := 0. The support of a given Haar
functionhk, k ≥ 0 is equal to an elementaryb-adic interval. We now define sets of integersk, for which
such intervals have the same length (resolution).

Definition 3.

1. Letg be a nonnegative integer. Then1(g) := {k ∈ NNN : bg ≤ k < bg+1}. Further, let1(−1) := {0},
and the setsNNN0 := NNN ∪ {0}, andNNN1 := NNN0 ∪ {−1}.

2. If ggg = (g1, . . . , gs), s ≥ 2 andgi ∈ NNN1, then1(ggg) := ∏s
i=1 1(gi).

Definition 4. Let eb : ZZZb → KKK, whereZZZb = {0, . . . , b − 1} is the least residue system modulob, and
K := {z ∈ CCC : |z| = 1}, denote the functioneb(a) := exp(2π ia/b), (a ∈ ZZZb). Thek-th Haar functionhk,
k ≥ 0, to the baseb is defined as follows: Ifk = 0 (g = −1), thenh0(x) := 1, ∀x ∈ [0, 1[. If k ∈ ∆(g),
g ≥ 0, then

hk(x) := bg/2
b−1∑
a=0

eb(akg) · 1Dk(a)(x), (3)
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with elementaryb-adic intervalsDk(a) := [(bk(g)+a)/bg+1, (bk(g)+a+1)/bg+1[. Thek-th normalized
Haar functionHk on [0, 1[ is defined asH0 := h0 and, ifk ∈ ∆(g), g ≥ 0, thenHk := b−g/2hk.

Hence, the supportDk of thek-th Haar functionhk is given as the following elementaryb-adic interval:
If k = 0, thenD0 := [0, 1[. If k ∈ ∆(g), g ≥ 0, thenDk := ∪b−1

a=0Dk(a) = [k(g)/bg, (k(g) + 1)/bg[.

Definition 5. LetHb:={hkkk : kkk:=(k1, . . . , ks) ∈ NNNs
0} denote the Haar function system to the baseb on

thes-dimensional torus [0, 1[s , s ≥ 1. Thekkk-th Haar functionhkkk is defined ashkkk(xxx) := ∏s
i=1 hki

(xi),

xxx = (x1, . . . , xs) ∈ [0, 1[s . The normalized versionHkkk is defined in the same way and the supports ofhkkk

andHkkk are defined asDkkk := ∏s
i=1 Dki

.

3. The basic approach

To estimate the star-discrepancy of (t, m, s)-nets we use the ‘raw form’ of the inequality of Erdös-Turán-
Koksma for the Haar function system given in Hellekalek [6,7] (an analogous result for Walsh functions
is shown in [5]). In the following, we present a concise summary of the basic approach given therein.

3.1. Step 1: Discretization with resolutionM := bγ , γ ∈ NNN

We shall approximateJ ∈ J by an inner intervalJ
¯

and an outer interval̄J in [0, 1[s where these
intervals have the form

∏s
i=1[0, ai/M[, 0 ≤ ai ≤ M. This will be done in order to get a finite Haar series

of the functionsfJ
¯

andfJ̄ .

The approximation may be realized in the following way: LetJ := ∏s
i=1[0, ui [, J

¯
:= ∏s

i=1[0, vi [
andJ̄ := ∏s

i=1[0, wi [. If ui = ai/M, 0 ≤ ai ≤ M, we setvi = wi = ui otherwise letvi := ui(γ ) and
wi := ui(γ ) + 1/M. Therefore we get

|RN(fJ ,P)| ≤ (λs(J̄ ) − λs(J
¯
)) + max{|RN(fJ

¯
,P)|, |RN(fJ̄ ,P)|}. (4)

Using ([14], Lemma 3.9) we obtain

D∗
N(P) ≤ 1 −

(
1 − 1

M

)s

+ sup
G∈J ∗

M

|RN(fG,P)|, (5)

whereJ ∗
M denotes the class of all subintervalsG of [0, 1[s of the formG = ∏s

i=1[0, ai/M[, 0 ≤ ai ≤ M.
The first term in (5) is called thediscretization errorand the second term denotes thediscrete star
discrepancy.

Remark 6.

1. Discretization. The discretization step is due to Niederreiter [11]. In this paper, he proved a variant of
the Erdös-Turán-Koksma inequality for finite rational point sets (see also ([14], Section 3.2)).

2. Discrete Discrepancy. The concept of discrete discrepancy was introduced by Niederreiter as well
[14]. An analogue of the result mentioned in (1) for the discrete discrepancy is given in [15], see also
[7].
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3.2. Step 2: Estimation of the discrete discrepancy

We considerG := ∏s
i=1[0, ai/M[. From ([7], Lemma 3.3) it follows that the Haar series of the func-

tion fG is finite. More precisely

fG(xxx) =
∑
kkk∈1∗

γ

1̂G(kkk) · hkkk(xxx) ∀xxx ∈ [0, 1[s, (6)

with Haar coefficientŝ1G(kkk) := ∫
[0,1[s 1G · hkkk dλs and1∗

γ := {kkk = (k1, . . . , ks) ∈ ZZZs : 0 ≤ ki < M,

0 ≤ i ≤ s}\{0}. Identity (6) and definition (2) yield

RN(fG,P) =
∑
kkk∈1∗

γ

1̂G(kkk) · RN(hkkk,P). (7)

Corollary 7. LetP = (xxxn)
N−1
n=0 be a point set in[0, 1[s . From the considerations above we get the‘ raw

form’ of the inequality of Erdös-Turán-Koksma for the Haar function system

D∗
N(P) ≤ 1 −

(
1 − 1

M

)s

+ sup
G∈J ∗

M

∑
kkk∈1∗

γ

|1̂G(kkk)| · |RN(hkkk,P)|. (8)

Estimates of the Haar coefficientŝ1G can be found in Hellekalek[6,7].

4. An application to special (ttt , m, sm, sm, s)-nets

The definition of (t, m, s)-netsP is closely coherent with Haar functions [17]. Hence proper estimates of
the Weyl sumsRN(hkkk,P) potentially yield small upper bounds of the star discrepancy. But for arbitrary
(t, m, s)-nets in baseb our method yields no improvement against existing estimates due to weak upper
bounds of the Weyl sums in general [1].

The situation probably changes if we restrict to special construction methods calleddigital netsdefined
below.

Definition 8. Letb ≥ 2 be a given base. For 1≤ i ≤ s, letCCC(i) bem×mmatrices overZZZb. In the following
every integern with 0 ≤ n < bm and digit expansion

∑m−1
i=0 nib

i, ni ∈ ZZZb, is identified with the vector
EnEnEn = (n0, . . . , nm−1)

t ∈ ZZZm
b , and eachx ∈ [0, 1[ with finite digit expansionx = ∑m−1

i=0 xi/b
i+1, xi ∈ ZZZb

is identified withExExEx = (x0, . . . , xm−1)
t ∈ ZZZm

b . ConsiderExExEx(i)
n = CCC(i). EnEnEn for 0 ≤ n < bm and 1≤ i ≤ s.

Then we obtain the following point setP ∈ [0, 1[s

P = {xxxn : xxxn = (x(1)
n , . . . , x(s)

n ), 0 ≤ n < bm}. (9)

These point sets were defined in [8–10] (in a more general form). The general construction principle was
introduced by Niederreiter [12–14].

Conditions ([12], Section 6) were given forP to be a (t, m, s)-net in baseb. For example, ifb is prime
andc

(i)
1 , . . . , c(i)

m are the row vectors ofCCC(i), thenP is a (t, m, s)-net in baseb if and only if for all
g1, . . . , gs ∈ NNN0 with g1 + · · · + gs = m − t , the set of vectors{c(i)

j : 1 ≤ j ≤ gi, 1 ≤ i ≤ s} is assumed
to be linearly independent overZZZb. Concrete examples of digital (t, m, s)-nets can be found in [9,12].
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4.1. A classical example

The conditions above yield the following simple (t, m, 2)-netsPt defined by the matrices below.

The netP0 := {xxxn = (0.nm−1 . . . n0, 0.n0 . . . nm−1) : 0 ≤ n < bm} is called theHammersley point set
in baseb which is well-known in the theory of uniform distribution of sequences modulo one [14]. The
calculation of the exact discrepancy ofP0 is carried out in [4]. If we truncatet bits of each coordinate
of theHammersley point set, we obtainPt , t ≥ 1. Note that for evenm andt = m/2 the uniform lattice
with 2m points in [0, 1[2 is obtained. HencePt , for increasingt, 0 ≤ t ≤ m/2, provide remarkable
examples of point sets with steadily decreasing equidistribution property, from ‘optimal’ (0,m, 2)-nets
to the classical uniform lattice.

In the following letb = 2, m > 2 and 0≤ t ≤ bm/2c. Larger values oft lead to a duplication of
points. In other words, different values ofn lead to the same point. The point setPt matches with the
Haar function systemH2 in the sense that the Weyl sums are very small and easy to determine, see below.

4.2. Haar coefficients and Weyl Sums

The definition of (t, m, s)-nets easily yieldsRN(Hkkk,Pt ) = 0 for all kkk ∈ ∆(ggg), ggg ∈ NNN2
1(−1, −1) with∑2

i=1(gi + 1) ≤ m − t . The latter property and the fact that all points ofPt have common denominator
2m−t motivate discretization (Step 1) with resolutionM := 2γ , γ = m − t .

Let G := [0, α[×[0, β[ with α = a/M andβ = b/M, 1 ≤ a, b < M. From the result above we only
have to consider resolution vectorsggg = (g1, g2) with 0 ≤ g1, g2 < γ andγ − 1 ≤ g1 + g2 ≤ 2(γ − 1).
Hence for Step 2 we are concerned with the expression

RN(fG,Pt ) =
γ−1∑

g1,g2=0, g1+g2≥γ−1

2(g1+g2)/2
∑

kkk∈1(ggg)

1̂G(kkk) · RN(Hkkk,Pt ). (10)

Hellekalek ([6], Lemma 1) provides detailed information on the Haar coefficients1̂G(kkk). The Weyl sums,
for different resolutions, have been calculated in [2]. Here we need to recall only two cases
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1. let g1 + g2 = m − t + j, j ∈ {−1, 0, . . . , t − 1}. If j = t − 1 thenRN(Hkkk,Pt ) = 1/2m−1 for all
kkk ∈ ∆(ggg). Forj ≤ t − 2 we obtainRN(Hkkk,Pt ) = 0 for all kkk ∈ ∆(ggg).

2. Letg1 + g2 = m + j, 0 ≤ j ≤ m − 2t − 1. Hence we obtain

RN(Hkkk,Pt ) =




2−m : k0 = lj−1, . . . , kj−1 = l0, andxg1 = yg2

−2−m : k0 = lj−1, . . . , kj−1 = l0, andxg1 6= yg2

0 : otherwise.

(11)

4.3. Discrepancy estimation ofPt

Halton and Zaremba [4] examined the ‘closed’ version of the discrepancy ofP0 which means that they
used closed intervals in Definition 1. The intervalsJ1 := [0, α∗] × [0, β∗] andJ2 := [0, α∗∗] × [0, β∗∗]
where the suprema are attained, are given by

α∗ = 2m − (−1)m

3(2m−1)
and α∗∗ = 5(2m−2) + (−1)m

3(2m−1)
, (12)

whereβ∗ and β∗∗ are respectively equal toα∗ and α∗∗ in that order whenm is even and in the re-
versed order whenm is odd. These intervals obviously will play the central role in our considerations
below.

The discrepancy estimation ofPt using Haar functions needs to distinguish between several cases
(similar as forP0 in [4]). In this paper we want to give an idea, how the estimation procedure works. A
detailed derivation needs much more space and therefore we want to refer to a forthcoming article.

In the following we explain the main steps to achieve the estimate. Therefore, we will limit to the case
of evenm only.

Step 1: Since we know the ‘maximal’ intervals for the discrepancy ofP0, we can derive the corre-
sponding intervals for thediscrete discrepancyof Pt . We slightly have to change the discretization step
for P0 and apply the inner intervalJ

¯
:= [0, α∗[×[0, α∗[ and outer intervalJ̄ := [0, α′[×[0, β ′[ with

α′ = β ′ = α∗ + 1/2m = 2(2m + 1)/3(2m). It turns out that the discrete discrepancy forP0 equals
|RN(fJ̄ ,P0)|.

Step 2:The main effort to obtain our estimate lies in the derivation of the discrete discrepancy. Therefore
we need to constitute the binary expansion of the marginal values of the inner and outer intervals, since
the exact calculation of the Haar coefficients from Hellekalek [6] depends on the digits of these numbers.
The determination of the Haar coefficients specifies the relevant vectorskkk in the right sum of (10).
With these vectorskkk we are able to derive the corresponding Weyl sums for the different cases (1)
and (2).

The magnitude of the sum in (10) depends only on the Haar coefficients the Weyl sums are constants.
Hence we can derive the ‘maximal’ intervals for the discrete discrepancy ofPt . Changingm to m − 2t

in J̄ above yieldsJ̄ := [0, α[×[0, β[, α = φ/2t + δ, β = φ′/2t + δ, 0 ≤ φ, φ′ < 2t , δ = 2(2m−t + 1)/

3(2m−t ).
A careful evaluation of (10) yields the following estimate for evenm:

D∗
N(Pt ) ≤ 1 −

(
1 − 1

2m−t

)2

+ 1

3

m − 2t

2m
+ 1

9

1

2m
− 1

9

1

22(m−t)
(13)
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Remark 9.

1. Let m be even andt = 0. Since we know the interval where the maximum in (4) occurs we can
calculate the exact discretization error(λs(J̄ ) − λs(J

¯
)) = (2m+2 − 1)/3(22m). The therefore we get

D∗
N(P0) ≥ 1

3

m

2m
+ 13

9

1

2m
− 4

9

1

22m
(14)

From [4] we know that the latter expression equals the exact discrepancy ofP0, hence our estimate is
best possible. Further, from ([14], Theorem. 3.14) we deduce thatD∗

N(Pm/2) = 1 − (1 − 1/2m/2)2.
2. Consider the point setP = P0. There are two different intervals where the supremum in (1) occurred.

In our case we obviously get the same number of ‘maximal’ intervals defined byα′ anda′′ = 1 − α′.
ForP = Pt , 0 ≤ t ≤ m/2 there are 22t+1 such intervals.

The graphics in Fig. 1 indicate property (2) and, in an impressive way, exhibit the structural behavior of
local discrepancy for our nets. Each rectangular block represents a marginal point of an intervalJ. The
level of each block exhibits the magnitude of the local discrepancy|RN(fJ ,P)|. Fig. 1 considers the
casesm = 6, t = 1 (upper graphics) andt = 2 (lower graphics).

4.4. Summary

An application of Haar function systems provides interesting methods to estimate the (star) discrepancy
of certain (t, m, s)-nets. In the general case, i.e. for arbitrary nets, we obtained no improvements against
existing results. But for special digital nets it is possible to derive excellent (sometimes best possible)
bounds for the star-discrepancy. Our method also leads to the evaluation of the exact calculation of discrete
discrepancy, a natural measure of equidistribution for finite precision point sets such as digital nets. For
our digital netsPt we finally get (if we also consider odd numbersm)

Proposition 10. For Pt , 0 ≤ t ≤ bm/2c, the digital (t, m, 2)-nets in baseb = 2, defined in Section 4.1
we get

D∗
N(Pt ) ≤ 1 −

(
1 − 1

2m−t

)2

+ 1

3

m − 2t

2m
+ 1

9

1

2m
− (−1)m

9

1

22(m−t)

Hence, as expected, with increasing parameter 0≤ t ≤ bm/2c the distribution quality of the netsPt

steadily decreases.

Remark 11. If we change the ‘quality criterion’, i.e. we use, instead of indicator functions, a different
function g inRN(g,Pt ), then we get the latter property in reversed order (the distribution with respect
to RN(g,Pt ) increases). Letm > 2 be even. Consider the rapidly converging Haar seriesg(xxx) :=∑

g1,g2≥0

∑
kkk∈1(ggg)r(kkk)3/2hkkk wherer(k) = 0, if there exists agi ∈ {m/2, . . . , m − 1}, andr(kkk) = 2(g1+g2)

otherwise. From ([1], Theorem 3.3.3) we getRN(g,Pt ) = 4/(2m + 22m) for t = m/2 andRN(g,Ps) =
2(m − s)/2m + 4/(2m + 22m) for 0 ≤ s < t , and thereforeRN(g,P0) > RN(g,P1) > · · · > RN

(g,Pt ).
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Fig. 1. Behavior of the local discrepancy|RN(fJ ,P)| for m = 6 andt = 1, 2.
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