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Abstract

We present a technique to estimate the star-discrepantynafg)-nets using generalized Haar function systems
and apply this technique to obtain upper bounds for the star-discrepancy of special tligita){nets in base 2
and dimension = 2. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Niederreiter [12,14] has developed different methods to estimate the star-discrepanay, sf-ets
in baseb. The proofs use the general definition of these nets and combinatorial methods.

In this paper we present a technique to estimate the star-discrepanana){nets using generalized
Haar function systems. The basis of this technique is the inequality of Erdos-Turan-Koksma for the Haar
function system shown in Hellekalek [7]. The ‘raw form’ of this inequality ([7], Theorem 3.4) provides an
upper bound of the (star) discrepancy of a pointRet (xn)fl";ol in thes-dimensional unit cube [0, 1]
s > 1, in terms of Weyl sums for Haar systems. Estimation of these Weyl sums provides an interesting
method to determine bounds of the star-discrepancy; of, §)-nets.

We apply the latter technique to obtain improved upper bounds for the star-discrepancy of special digital
(t, m, 9)-nets in base 2 and in dimensiora= 2. Our method will further lead us to the exact determination
of the discrete discrepancy which is the natural measure of equidistribution for point sets with finite
precision such as digital,(m, s)-nets. Advantages and drawbacks of the technique are discussed.

Definition 1. LetP = (xn),’;’:‘o1 be a point set in [0, [ The star-discrepand®; (P) of P is defined as

1
Dy (P) := sup N-#{n:xneJ,0§n<N}—/\s(J) , D
JeJ*
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where 7* denotes the class of all subintervdlsf [0, 1[° of the formJ = IT{_;[0, u;[,0 < u; < 1,
1 <i <s,#M denotes the number of elements of as¢tandA, the Lebesgue measure on [05.1]

If we definef;(x) := 1,(x) — A;(J), x € [0, 1%, with the characteristic functiot,, we get

1 V-1
Dy (P) = sup|Ry(f;, P)I whereRy(f;, P) = NZfJ(xn)- 2

JeJ* n=0

Note thatRy (f,, P) equals the Monte Carlo approximation%{’l[x frdig.
The concept oft( m, s)-nets in base 2 was introduced by Sobol’ [17]. Niederreiter has extended this
idea considerably. He has introduced arbitrary bases, efficient construction methods for such point sets

and a comprehensive theory, see the monograph [14] and the recent survey [16].

Definition 2. Let 0 <t < m andb > 2 be integers. At(m, s)-net in basé is a point sefP consisting
of b™ points in [0, 1F such that every elementary interMaln baseb with volume A,(1) = b'™™
contains exactly’ points of P. Note that such an elementary interVéh baseb, by definition, equals
I =1T1_;lai/b%, (a; + 1)/b%i[, wherea;, g; € Z,g; > 0and 0< a; < b% forl <i <.

2. Generalized Haar function systems

In the following we fix an arbitrary integer base> 2. For the notations and definitions of generalized
Haar functions relative to bageand further applications, see [1,3,6,7]. In this section we recall the basic
notations.

For anintegek > 0 and an arbitrary numbere [0, 1[, letk = 372 ok;b/ andx = Y72 ox;677 71, k;,
xj € {0,1,...,b — 1}, be theb-adic expansions df andx in baseb. Forg € N we definek(g) :=
Zﬁ;ékjbf andx(g) = Zﬁ;éij‘f‘l. Further lett(0) := 0 andx(0) := 0. The support of a given Haar
functionhy, £k > 0 is equal to an elementabyadic interval. We now define sets of integ&r$or which
such intervals have the same length (resolution).

Definition 3.

1. Letg be a nonnegative integer. Tha(g) := {k € N : b% < k < b%+1}. Further, letA(—1) := {0},
and the setd&¢ := N U {0}, andN, := NoU {—1}.
2. Ifg=(g1,...,8),5 = 2andg; € N1, thenA(g) :=[];_; A(g).

Definition 4. Lete, : Z, — K, whereZ, = {0, ..., b — 1} is the least residue system modblcand
K :={z € C : |z] = 1}, denote the function, (a) .= exp(2ria/b), (a € Z;). Thek-th Haar functiorh,,
k > 0, to the basé is defined as follows: Ik = 0 (¢ = —1), thenho(x) :=1,Vx € [0, 1[. If k € A(g),
g > 0, then

b-1

hi(x) = b*/?Y "ep(aky) - 1pa) (x), 3)

a=0
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with elementary-adic intervalsD; (a) := [(bk(g) +a)/b%t1, (bk(g)+a+1)/b4T[. Thek-th normalized
Haar functionH, on [0, 1[ is defined a#ly := ho and, ifk € A(g), g > 0, thenHy := b—%/%hy.

Hence, the suppoB;, of thek-th Haar functiorh, is given as the following elementabyadic interval:
If k = 0, thenDg := [0, 1[. If k € A(g), g > 0, thenDy := U°Z3Dy(a) = [k(g)/b?, (k(g) + 1)/b4[.

Definition 5. Let H,:={hx : ki=(k1, ..., k;) € Ny} denote the Haar function system to the blasm
the s-dimensional torus [0, I[ s > 1. Thek-th Haar functiorhy is defined agi (x) := [}_; h, (x:),
x = (x1,...,xs) € [0, 1[*. The normalized versioH; is defined in the same way and the supports,of
andH, are defined a®y := [;_; Dx,.

3. The basic approach

To estimate the star-discrepancyph, s)-nets we use the ‘raw form’ of the inequality of Erdés-Turan-
Koksma for the Haar function system given in Hellekalek [6,7] (an analogous result for Walsh functions
is shown in [5]). In the following, we present a concise summary of the basic approach given therein.

3.1. Step 1: Discretization with resolutiodf :=b",y € N

We shall approximatgd e 7 by an inner intervall and an outer interval in [0, 1[°* where these
intervals have the forrﬂle[o, a;/M[,0 < a; < M. This will be done in order to get a finite Haar series
of the functionsf; and f;.

The approximation may be realized in the following way: Uet= [];_,[0, u;[, L := [];_4[0, vi[
andJ:= [T_1[0, wil. f w; = a;/M,0 < a; < M, we setv; = w; = u; otherwise let; := u;(y) and
w; ‘= u;(y) + 1/M. Therefore we get

IR (f1, P)| < (he() = A (D) + max{|Ry (f 1. P, IRn(f7. P)I}. (4)
Using ([14], Lemma 3.9) we obtain

1 )

Dy(P) <1- (1— M) + sup|Ry(fc. P)I, ®)
GeJy

whereJ}; denotes the class of all subintervalsf [0, 1[* of the formG = [];_;[0, a;/M[,0 < a; < M.

The first term in (5) is called thdiscretization errorand the second term denotes tfiscrete star

discrepancy

Remark 6.

1. Discretization. The discretization step is due to Niederreiter [11]. In this paper, he proved a variant of
the Erdos-Turén-Koksma inequality for finite rational point sets (see also ([14], Section 3.2)).

2. Discrete Discrepancy. The concept of discrete discrepancy was introduced by Niederreiter as well
[14]. An analogue of the result mentioned in (1) for the discrete discrepancy is given in [15], see also

[7].
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3.2. Step 2: Estimation of the discrete discrepancy

We considelG := [];_,[0, a;/M[. From ([7], Lemma 3.3) it follows that the Haar series of the func-
tion fs is finite. More precisely

fo@) =Y Ig(k) - he(x) Vx €[0,1[, (6)

keA;

with Haar coefficientig(k) = fo’l[le - hy dag andA”y‘ =lk=(kg,....ks) €Z° :0<k; <M,
0 <i < s}\{0}. Identity (6) and djefinition (2) yield

Ry(fo.P) =Y Ig(k) - Ry(hi. P). (7)

keA;

Corollary 7. LetP = (xn),lf;ol be a point set if0, 1[*. From the considerations above we get thewv
form’ of the inequality of Erdos-Turan-Koksma for the Haar function system

1\ —
Dy(P) <1- (“M) + sup Y 1TG@)| - Ry (i P)I. (8)

Gedy ke
Y

Estimates of the Haar coeﬁicierﬁ can be found in Hellekaldl6,7].

4. An application to special ¢, m, s)-nets

The definition of {, m, s)-netsP is closely coherent with Haar functions [17]. Hence proper estimates of
the Weyl sumsRy (i, P) potentially yield small upper bounds of the star discrepancy. But for arbitrary
(t, m, 5)-nets in basdé our method yields no improvement against existing estimates due to weak upper
bounds of the Weyl sums in general [1].

The situation probably changes if we restrict to special construction methodsdigitadinetsdefined
below.

Definition8. Leth > 2beagivenbase.Ford i < s,letC® bem xm matrices ovek,. Inthe following
every integen with 0 < n < »™ and digit expansiOtZT:‘Oln,-bf, n; € Zy, is identified with the vector
i = (no,...,ny—1)" € Z}', and each € [0, 1[ with finite digit expansion: = Z;”:}Jlxi/b"“, x; € Zp,
is identified with¥ = (xo, ..., x,_1)' € Z". Considet’ = C?”.iiforO<n < b”and1<i <s.
Then we obtain the following point s& < [0, 1[

P={x,:x, =P, ...,x9), 0<n<bd"}. 9)

These point sets were defined in [8—10] (in a more general form). The general construction principle was
introduced by Niederreiter [12—-14].

Conditions ([12], Section 6) were given f@Yto be a {, m, 5)-net in basé. For example, ibis prime
andcl’, ..., c" are the row vectors of , thenP is a ¢, m, 9)-net in baseb if and only if for all
81.....8 € Nowith g1 +- -+ g, =m — ¢, the setof vectorg” : 1 < j < g;, 1 <i < 5} is assumed
to be linearly independent ové&r,. Concrete examples of digitél (n, s)-nets can be found in [9,12].



K. Entacher/Mathematics and Computers in Simulation 55 (2001) 49-57 53

4.1. A classical example

The conditions above yield the following simpler, 2)-netsP; defined by the matrices below.

000---000---001
000---000---010
000---000---100

¢ .=|000---001---000
000---010---000
000---000 000}

: : : t
000---000---000
100---000---000
010---000---000
001---000---000
c®.=1000---100---000
000---010---000
000---000---000
: : ;}t
000---000---000

The netPy := {x, = O.ny_1...1n0,0n0...1n,_1) : 0 < n < b™} is called theHammersley point set
in baseb which is well-known in the theory of uniform distribution of sequences modulo one [14]. The
calculation of the exact discrepancyB§ is carried out in [4]. If we truncatebits of each coordinate
of theHammersley point sgtve obtainP;, + > 1. Note that for evem ands = m /2 the uniform lattice
with 2™ points in [0, 1F is obtained. Hencé,, for increasing, 0 < r < m/2, provide remarkable
examples of point sets with steadily decreasing equidistribution property, from ‘optimafi, @;nets
to the classical uniform lattice.

In the following letb = 2, m > 2 and 0< ¢ < |m/2]. Larger values of lead to a duplication of
points. In other words, different values oflead to the same point. The point $&8t matches with the
Haar function syster#{, in the sense that the Weyl sums are very small and easy to determine, see below.

4.2. Haar coefficients and Weyl Sums

The definition of {, m, s)-nets easily yieldRy (Hi, P;) = 0forallk € A(g), g € Ni(—l, —1) with
Ziz:l(gi + 1) < m —t. The latter property and the fact that all points®fhave common denominator
2™~ motivate discretization (Step 1) with resolutidh:= 27,y =m — ¢.

LetG := [0, o[ x[0, B[ with « = a/M andB = b/M, 1 < a,b < M. From the result above we only
have to consider resolution vect@s= (g1, g2) With0 < g1, go <y andy —1< g1+ g <2(y — 1).
Hence for Step 2 we are concerned with the expression

y—1
Ry(fe.Pr) = > 2wt2 N 15(k) - Ry (He, Py). (10)
81,82=0, g1+g2>y—1 keA(g)

Hellekalek ([6], Lemma 1) provides detailed information on the Haar coefficlerts). The Weyl sums,
for different resolutions, have been calculated in [2]. Here we need to recall only two cases
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1l letgr+g=m—t+j,je{-10...,t —1.If j =t —1thenRy(H, P,) = 1/2"1 for all
k e A(g). Forj <t — 2 we obtainRy (Hg, P;) = 0forallk € A(g).
2. Letgr+go=m+ j,0<j<m—2t— 1. Hence we obtain

2-m o ko= lj_l, ey kj_l =y, andxgl =Yg,
Ry(He, P) =1 —27" © ko=1lj_1,....,kj—1=1Io, andx, # yg, (11)
0 . otherwise

4.3. Discrepancy estimation &%

Halton and Zaremba [4] examined the ‘closed’ version of the discrepareywhich means that they
used closed intervals in Definition 1. The intervdjs= [0, «*] x [0, 8*] and J; := [0, «**] x [0, **]
where the suprema are attained, are given by

. om _ (_1)m and o — 5(27»1—2) + (_1)m

RECER T ey )

where 8* and g** are respectively equal t@* and«™* in that order wherm is even and in the re-
versed order whem is odd. These intervals obviously will play the central role in our considerations
below.

The discrepancy estimation @&, using Haar functions needs to distinguish between several cases
(similar as forPy in [4]). In this paper we want to give an idea, how the estimation procedure works. A
detailed derivation needs much more space and therefore we want to refer to a forthcoming article.

In the following we explain the main steps to achieve the estimate. Therefore, we will limit to the case
of evenmonly.

Step 1: Since we know the ‘maximal’ intervals for the discrepancyRaf we can derive the corre-
sponding intervals for thdiscrete discrepancgf P,. We slightly have to change the discretization step
for Py and apply the inner interval := [0, «*[x[0, «*[ and outer intervall := [0, &[x[0, B[ with
o =B =af+1/2" = 22" 4+ 1)/3(2™). It turns out that the discrete discrepancy foy equals
IRn(f7, Po)l.

Step 2:The main effort to obtain our estimate lies in the derivation of the discrete discrepancy. Therefore
we need to constitute the binary expansion of the marginal values of the inner and outer intervals, since
the exact calculation of the Haar coefficients from Hellekalek [6] depends on the digits of these numbers.
The determination of the Haar coefficients specifies the relevant vdctordhe right sum of (10).

With these vectorg we are able to derive the corresponding Weyl sums for the different cases (1)
and (2).

The magnitude of the sum in (10) depends only on the Haar coefficients the Weyl sums are constants.
Hence we can derive the ‘maximal’ intervals for the discrete discrepangy.@hangingmto m — 2¢
in J above yields/ := [0, «[x[0, B[, = ¢/2' + 8, B=¢'/2' +8,0< ¢, ¢’ < 2,8 =2(2" " + 1)/
32" ).

A careful evaluation of (10) yields the following estimate for even

1\° 1m-2r 11 1 1
>mt (13)

DN(P[) <1l- <1_ om—t + :_.3 om + 527 o 522(771*!)
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Remark 9.

1. Letmbe even and = 0. Since we know the interval where the maximum in (4) occurs we can
calculate the exact discretization erfag(J) — A,(L)) = (22 — 1)/3(2?"). The therefore we get

1 131 41
ek (14)

Di(Po) = 92n 92

—32n
From [4] we know that the latter expression equals the exact discrepafigy loiénce our estimate is
best possible. Further, from ([14], Theorem. 3.14) we deducelk&P,,2) = 1 — (1 — 1/2"/%)2,

2. Consider the point sét = P,. There are two different intervals where the supremum in (1) occurred.

In our case we obviously get the same number of ‘maximal’ intervals defineddyda” =1 — o'.
ForP = P,,0 <t < m/2 there are 2*+! such intervals.

The graphics in Fig. 1 indicate property (2) and, in an impressive way, exhibit the structural behavior of
local discrepancy for our nets. Each rectangular block represents a marginal point of an ht€hel

level of each block exhibits the magnitude of the local discrepaRrgy f;, P)|. Fig. 1 considers the
casesn = 6,r = 1 (upper graphics) and= 2 (lower graphics).

4.4, Summary

An application of Haar function systems provides interesting methods to estimate the (star) discrepancy
of certain ¢, m, s)-nets. In the general case, i.e. for arbitrary nets, we obtained no improvements against
existing results. But for special digital nets it is possible to derive excellent (sometimes best possible)
bounds for the star-discrepancy. Our method also leads to the evaluation of the exact calculation of discrete
discrepancy, a natural measure of equidistribution for finite precision point sets such as digital nets. For
our digital netsP, we finally get (if we also consider odd numbens

Proposition 10. For P,,0 < ¢t < |m/2], the digital (t, m, 2)-nets in basé = 2, defined in Section 4.1
we get

1)2 1m—2t 11 (=™ 1

2m—t Qom

Hence, as expected, with increasing parameter 0 < |m/2] the distribution quality of the net®,
steadily decreases.

Remark 11. If we change the ‘quality criterion’, i.e. we use, instead of indicator functions, a different
function g inRy (g, P,), then we get the latter property in reversed order (the distribution with respect
to Ry(g, P;) increases). Lein > 2 be even. Consider the rapidly converging Haar sefi@d =
Zgl,gzzozkﬂ(g)r(k)mhk wherer (k) = 0, if there exists &; € {m/2,...,m — 1}, andr (k) = 2(&1+s2)
otherwise. From ([1], Theorem 3.3.3) we gt (g, P;) = 4/(2" + 22") fort =m/2 andRy(g, P;) =

20m — 5)/2" + 4/(2" 4+ 22"y for 0 < s < t, and thereforeRy (g, Po) > Ry(g,P1) > --- > Ry

(g’ 731‘)
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Fig. 1. Behavior of the local discrepan®y (f;, P)| form = 6 andr = 1, 2.
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