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Abstract

We introduce and discuss the term ‘“‘bad lattice points” which can be seen as a counterpart to the
method of good lattice points for Monte Carlo and quasi-Monte Carlo integration. We show several
examples of the occurrence of bad lattice points in the latter fields and perform a computer search for
such point sets.

Mathematics Subject Classifications: Primary 11Y40, 11-04; secondary 11K45, 68W40.

Keywords: Monte Carlo and quasi-Monte-Carlo methods, lattice rules, random number generation,
spectral test, good lattice points.

1. Introduction

For an explanation or motivation of the term “bad lattice points™, the prior
introduction of a basic term from the fields of Monte Carlo (MC) and quasi—
Monte Carlo (QMC) methods is required, the so-called method of good lattice
points or Korobov lattice rule. Good lattice points are classical node sets for QMC
integration, defined by the Russian mathematician Korobov [35]. Consider
a parameter a with 1 <a<N, N €N, and the s-dimensional vector
v:=(l,a,d% ...,a*"), s > 2. A Korobov lattice rule is defined by the set

Py :={(n/N)v (mod 1): 0 <n < N}. (1)

The set Py can be seen as the intersection of the s-dimensional unit cube
IF:=10,1)" with the integer lattice

Li(a,N):=3> kb :k€Zy, (2)
P
with lattice basis b = (1,a,... ,a®")/N, by =(0,1,0,...,0), ... by =

(0,0,...,0,1).

The classical application of such Korobov lattice rules is the approximate cal-
culation of integrals over ¥, by the (quasi—)Monte-Carlo quadrature rule
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N—-1
: Zf(xn)> X, € PN- (3)

n=0

=]

f(x)dx ~
1.\‘

More recent lattice rules, so-called rank-7 lattice rules are constructed by modular
summation over multiples of different vectors v;, 1 < i < r. Korobov lattice rules
are a special case of rank-1 rules. For more details on the theory of integration
lattices, see [53], [54], [60].

Figure 1 shows examples of simple lattices Py with N =27 — 1, a = 3 (left) and
a = 53 (right). Intuitively, one would call the left lattice a ““bad” lattice and the
right one a “good” lattice, since for QMC integration of an arbitrary 2-dimen-
sional function one would choose the node set as evenly distributed as possible.

But how to distinguish between good and bad lattices? For this task, several
equidistribution measures for an assessment of the lattice quality have been
constructed, see [17], [27], [53], [60]. For our purposes we use the spectral test
which can be computed very efficiently and provides a reliable measure for lattice
assessment [17]. This test has extensively been applied to find good lattices for
several MC and QMC applications, e.g., see [2], [22], [32], [41]-[43], [45]. For
further development on the spectral test not only for lattices, see [25], [26], [54].

The spectral test uses the dual' lattice L*(a,N) of Ly(a,N) which for Korobov
lattice rules is simply given by a dual basis B* where b] = (N,0,...,0),
bs = (-a,1,0,...,0), ..., b" = (—a*"1,0,...,0,1).

From the latter basis, by means of the Fincke-Pohst algorithm [21], the shortest
vector v of the dual lattice can be computed. One over the euclidean length of this
shortest vector yields the spectral test dy which determines the maximum distance
between adjacent hyper-planes, taken over all families of parallel hyper-planes
which contain all points of the lattice. Furthermore, the L;-norm |v|, of the
shortest vector minus one gives an upper bound s, of the smallest number of

Fig. 1. Lattice rules Py with N =27 — 1 and a = 3 (left) and a = 53 (right)

' The dual of a lattice L, is defined as L := {w € R* : w-v € Z for all v € L,}. The dual basis of a
given lattice basis B = {b,..., b} is provided by the set of vectors B* = {b],...,b;} such that
b; - bj*. = 6;j, with &;; = 1, if i = j and §;; = 0 otherwise.
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hyper-planes on which all the points of the lattice lie, see [12] and also [22], [34],
[44]. Widely used is also a normalized spectral test S, :=d/d,, 2 <s <8, for
which 0 < §; <1 (values near 1 imply a good lattice structure). The constants d;f
are absolute lower bounds on dj, see [22], [34]. L’Ecuyer [42] used also certain
lower bounds d; for dimensions s > 8 in order to compute S, for arbitrary
dimensions. For our examples in Fig. 1 above we have S, = 0.26 and n, = 3 for
the left graphics and S, = 0.99 and n, = 12 for the right one.

In the present paper, we will not consider good lattices®. As the title already
suggests, we will investigate the counterparts, called “bad lattice points’ (BLPs).
But what do we mean by BLPs? For example, it is easy to construct Korobov
lattice rules with very bad lattice structures. If the parameter « is small such as
a=2,3,4,... , the vectors of the corresponding lattices are placed on a small
number of hyperplanes in al/l dimensions s > 2. This can be seen from the dual
basis vector b above. For small parameters a the latter vector is already a short
vector in the dual lattice and therefore the number n, of hyperplanes containing
all lattice points is lower than a = |b}|, — 1. Therefore, one might call Korobov
lattice rules with very small parameters “worst lattice points”. Moreover, the
parameters a; := @' (mod N) are also small for small powers i. Therefore, lattices
rules Ly(a;, N) from such powers are of poor quality as well. Following the idea of
lattices providing poor quality lattice points across a wide range of dimensions,
we give the following definition.

Definition 1: A4 lattice rule is defined to deliver “‘worst lattice points’ with respect
to a threshold-vector t = (t1,...,t,) iff Si<t, Yi=1,...,s.

Since this is a very strict demand it is hardly suited as the only means to char-
acterize poor quality lattices. For a more general definition, low quality is only
required in one dimension.

Definition 2: A lattice rule is defined to deliver “bad lattice points” with respect
to a threshold-vector t=3S8; <, 1 <i<s, Vi=1,...,s.

How should we set t to result in poor quality lattice rules ? A common approach is
to use a fixed value across dimensions, e.g., t{; = ... =, = 0.1. As an example we
consider multiplicative prime modulus LCGs with m = 467421271 and randomly
generate 1000000 primitive root multipliers which are evaluated with respect to
t =0.1. Table 1 displays the number of multipliers which are rated as “bad”
according to Definition 2.

Table 1. Number of “bad” generators

s=2 3 4 5 6 7 8 16 24
11323 2484 436 44 2 0 0 0 0

2 On selection of good lattices see [18], [23], [41]-[43], [45], [53], [61].
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We observe a steady decrease of the number of multipliers which are rated as bad
with increasing dimension s and no more such multipliers for dimensions s > 7.
This phenomenon may be explained in two ways: either there are no poor quality
lattice rules in higher dimensions or our criterion is not suited to identify them. No
matter what is true, a pragmatic approach is to rate a lattice rule as of poor quality
in case it is contained in a small quantile of the empirical distribution of the quality
of all multipliers, e.g., in the 1% quantile. Table 2 shows the thresholds (depending
on dimension) which need to be applied to result in 1% bad lattice points. These
estimates have been obtained by averaging values across a wide range of moduli.

It is very interesting to note that the thresholds increase with increasing dimen-
sions (this fact may also be derived from numerical results in [1], [2]). The values
in Tables 1 and 2 are our principal motivation to define bad lattice points with
respect to a threshold vector instead of a fixed threshold value. These results also
suggest that the normalization factors within the normalized spectral test in high
dimensions [42] require refinement in order to use this measure for comparisons
across dimensions.

In this work we concentrate on BLPs which occur in the field of random number
generation. Certain vectors of linear random numbers produce lattice structures if
all numbers of the generator are consumed. In Sect. 2, we discuss BLPs of the
latter type which mainly occurred if the performance of the generator’s imple-
mentation dominated the design decisions. We denote LCGs of this type
“unreasonable”. We discuss such generators which have been implemented in
commercial software.

We also use the term BLP to refer to lattices which have been selected due to their
high quality in certain applications or dimensions, but it turned out that the same
lattices used in different applications or different dimensions show poor quality
(or also a sub-lattice or a projection to certain indices behaves badly). Such
scenarios frequently occur in different applications of MC and QMC methods.
Lemieux and L’Ecuyer [45], for example, recently showed examples of high
quality Korobov lattice rules with poor projections, i.e., lattices obtained by
projections over sub-spaces showed poor quality. In Sect. 3, we analyze further
examples of BLPs in the meaning as outlined above. The quality of the BLPs in
Sects. 2 and 3 is analyzed theoretically and empirically by means of the spectral
test. Section 4 contains results of an extensive computer search for BLPs.

2. BLPs: Unreasonable LCGs

Linear congruential random number generators (LCGs) have extensively been
applied as a source for randomness in computer simulation for a long time and
they are until now the most common random number generators. Although we

Table 2. Thresholds resulting in 1% : “bad’ generators

5] 5] 1y ts t6 t7 13 tie 4
0.10 0.16 0.22 0.27 0.31 0.35 0.37 0.51 0.57
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have to mention that recent versions use implementations based on a combination
of LCGs, or multiple recursive generators (MRGs) to get improved quality and
huge periods. The definitions and basic properties of linear random number
generators are contained in [22], [34], [38], [53]. LCGs are generated by means of
the recursion y,1 = ay, + b (mod m), n > 0, and by an initial seed yy, a # 1, b,
Y € Z,, (we abbreviate by LCG(m, a,b)). Normalized PRNs in [0, 1[ are obtained
by the transformation x, := y,/m. An important property of linear congruential
generators in general (this also holds for combined LCGs and for MRGs), is that
arbitrary s-dimensional vectors

Xi i= (X5 Xijyy -5 X ), 4)
with fixed lags ji, ... , js—1, are contained in certain grid structures (shifted
lattices) [44]. For j, =1, ... | j._1 =s — 1, the case which has been studied in

detail, these vectors are called overlapping s-tuples. For multiplicative LCGs with
prime moduli, the latter s-tuples produce Korobov lattice rules, i.e., intersections
of a lattice Ls(a, m) with the s-dimensional unit cube 7. LCGs with power-of-two
moduli produce shifted versions of the latter lattice, see [22], [34], [38], [47], [53],
[56]. Essentially different lattices Lg(a’,m’) are obtained for vectors (4) with
arbitrary lags which occur if, for example, lagged subsequences from the output
of an LCG are used [16], [38], [44].

For different reasons, LCGs have been implemented in commercial software
where certain vectors (4) above showed extremely bad lattice structures. The most
famous of these LCGs is the well known “IBM” generator RANDU LCG(23!,
216 4+ 3 = 65539, 0) [22], [24], [25], [34], [36], [55]. The bad behavior of generators
like RANDU should be well known in the scientific community for long years.
Nevertheless, related generators of poor quality found ways to be recommended
or implemented in recent literature or software, respectively.

In the following section we consider such generators. The first examples are’

UG1 := LCG(2%2, 3141592653, 1) implemented in the mathematical software
DERIVE (www.derive.com) and the generator* UG2 := LCG(2% — 31, 5% = 3125, 0)
described in [58].

Both LCGs show bad spectral test results in dimension two. For UG1 the spectral
test in dimension s = 2 and 3 equal S, = 0.09718 and S3 = 0.5552 and for UG2 we
get S, = 0.01569 and S;3 = 0.8564. Figure 2 shows zooms into the lattice structure

3 The multiplier probably stems from Knuth [34, pp. 32; 44; 102], who studied LCG(2%, 3141592653,
2718281829) (note that the digits of the multiplier equal the first digits of 7 in its decimal
representation).

4 Note, that UG2 was already used in the sixties. Quote from [46]: The generator was described by
Hutchinson [29] and ascribed to Professor D. H. Lehmer. Hutchinson discussed a particular form of the
generator for the IBM 7094, in which p = 2% — 31 is the largest prime less than 2% and A = 5.
Unfortunately, his tests on this generator were not published; our own tests and use of the generator
confirmed that it is an exceptionally good pseudorandom number generator.

A similar generator Mgen()= LCG(2%°,5°,0), used for shuffling purposes, is implemented in the
simulation software C++SIM (cxxsim.ncl.ac.uk). Note, that Mgen() shows satisfying spectral test
results.
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of UG2 which exhibit the coarseness of the lattice in dimension two and the fine
lattice structure in dimension three.

Generators with extreme defects are UG3 = LCG(2%, 2° + 1 = 513, 297410973),
used for the numerical calculations in [28] (first empirical results of this LCG
with different additive constant are given in [31]), and UG4 = LCG(2*,
2?4 4.3,0), which corresponds to the NETLIB Module RANDNUM-CRAY (a
vectorized random number generator for the Cray X-MP, see [3] and
www.netlib.org). Similar as for RANDU the multipliers for these LCGs were
chosen to obtain fast implementations (e.g., a multiplication with 2° 4 1 is equal
to a shift of 9 bits and an addition of 1). The spectral tests of both LCGs show
spectacularly bad results, see Table 3. LCGs with power of two moduli m = 2*
and multipliers close to a power of two are well known to produce bad lattice
structures, since such multipliers are solutions of certain polynomial equations
in Z, with very small coefficients which is equivalent to the existence of short
dual vectors and therefore bad spectral tests, see below and [52, p. 1026], [34,
p. 104], [22], [33], [50]. One of the first (mixed) LCGs of this type for example is
the generator UG5=LCG(2%, 2" + 1, 1), already proposed by Rotenberg in
1960 [59] (citation from [31], [50]). The related LCG(2%, 27 + 1, 907633385, 0)
was implemented in Version 3.0 of Turbo-Pascal (Borland International), for its
bad behavior see [14], [55].

In the Introduction, we already demonstrated that small multipliers result in
bad lattice structures. Generator UGS and also UG3 still belong to this case. We

0.003
0.0005
0.003
0 .
0 0.0005 0.003
Fig. 2. Zooms into the lattice structure of overlapping vectors from UG2
Table 3. Spectral tests S; and n; for UG3, UG4 and UG5

s=2 3 4 5 6 7 8
UG3 Sy 0.00004  0.0088 0.1252 0.6168 0.2157 0.1297 0.1022

ng 513 513 513 513 127 39 19
UG4 Ss 0.6580  0.00023  0.0031 0.01487  0.0411 0.0841 0.1415

ng 8388609 15 17 17 17 17 17
UG5 Sy 0.00065  0.0353 0.2520 0.7926 0.2157 0.2128 0.2892

Ny 129 129 129 129 31 19 19
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recall that for small parameters a and certain dimensions s, the dual basis
vectors by = (—a, 1,0,...,0) are already short vectors in the corresponding dual
lattice. Therefore, for UG5 we get ny = 129, s = 2,3,4 and for UG3, n, = 513 for
s =2,3,4,5. For larger dimensions some shorter dual vectors occur (compare
Table 3). For these dimensions the form of the multiplier, in our case a = § + 1
with = 2%, causes these short vectors. For such a multiplier a the modulus
m can easily be expressed as m= Zj;(l] cja/, ¢;€Z and therefore
ng < Zj;(l) lcjl — 1. The latter property is a special case of the more general

Proposition 3 in [40].

As an example, consider UG3 in dimension s = 6. We have m =4(a — 1)’ =
4(a® — 5a* +10a® — 10a®> + 5a — 1), which yields a dual lattice vector
w = (—4,+20, —40,40, —20,4). For this vector we get ns < |w|; — 1 = 127 which
equals the spectral test in Table 3 above. As a final example consider UG4 for
which a = B+ 3, B = 2?*. In the same way as above, for dimension s = 3 we get
m=(a—3)% hence w=(-9,6,—1) as a dual vector, which yields
n3 < |w|, —1 =15, which again equals the corresponding value in Table 3.

LCGs with multipliers near a power of two, in particular RANDU, have widely
been used for a long time and implementations are still available. Some further
examples and references concerning the latter LCGs are contained in [7], [31], [47],
[51], [52].

Not only LCGs may produce bad lattice structures. L’Ecuyer et al. [5], [6], [40],
[62], [63] identified bad lattice structures for overlapping vectors and vectors of
non-successive values produced by several linear methods (multiple recursive
generators, lagged-Fibonacci generators). Especially the add-with-carry (AWC)
and subtract with borrow (SWB) pseudorandom number generator proposed by
Marsaglia and Zaman [49] exhibited extremely bad lattice structures in high
dimensions. This is due to the fact that AWC and SWB generators are almost
equivalent to special LCGs with large moduli.

An example is LCG(m = a® — a® + 1,a = 23!,0) which closely approximates the
subtract with borrow (SWB) [49] pseudorandom number generator which is
implemented in Mathematica® (SWB version 7 with period ~ 10*5 given in
Table 2 of the latter paper). In the case of the Mathematica generator the
(non-normalized) spectral test d; = 1/1/3 for dimensions s > 49 (4.6 x 10~ for
s < 49). Moreover, certain three-dimensional vectors of non-successive values of
such generators lie in parallel planes that are at least 1/1/3 apart [40].

Another similar SWB generator given in [49, Vers. 3, Table 2] and used as a
component of the combined generator proposed in [48] is almost equivalent to
LCG(m = a® — a*® + 1,a = 232 — 5,0). Spectral tests and Beyer quotients for this
generator are given in [5], [63], empirical results in [37]. The lattice structure of the
combined generator from [48] is examined in [5]. Further empirical results which
exhibit defects of AWC and SWB generators are given in [20].

5 .
www.wri.com; www.wol fram.com
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3. BLPs: Long Range Correlations

In contrast to the previous section we now consider the situation where the
parameters of an LCG are well chosen with respect to lattice structures of over-
lapping vectors. But if we change certain lags in (4), then bad lattices occur. In the
following we consider the case of prime LCGs only.

As an example, we examine special lags of the form j, =1, j,=
21,...,js-1=(s—1)-1 with />2. An analysis of the corresponding vectors
Xi = (Xj, Xi1 1, Xi42.05 - - s Xi(s—1).¢) €an be seen as an analysis of correlations be-
tween consecutive blocks of random numbers with block-length /. Elementary
calculations (see [16], [53, p.172] or [56] for related concepts) show that for certain
LCGs the vectors x; are contained in the intersection of I° with a shifted lattice
Ls(c,m) with ¢ = a’ (mod m), m the modulus of the LCG.

Especially when the lags / are large we obtain the well known analysis of
long-range correlations® of random numbers [9], [8], [10], [11], [13]. The latter
papers treat the case s =2 which can be seen as an analysis of correlation
between pairs of large consecutive blocks of random numbers. We can also
study long-range correlations between larger numbers of blocks which is equal
to a lattice analysis for larger dimension s. An empirical analysis of such long-
range correlations for higher dimension is contained in [19].

As an example, we consider the widely used prime LCG Gl := LCG(m = 23! — 1,
a = 16807, 0). This particular generator has widely been used and actual imple-
mentations are available from the Internet. See [3], [8], [22], [30], [36], [38], [39],
[47], [55], [56] for references, empirical tests and implementations in free and
commercial software. The following online resources contain related material:
Resampling Stats (www.resample.com), Numerical Recipes (www.nr.com), the
mathematical software MATLAB (www.mathworks.com), the IMSL Libraries, or
the simulation software ACSL (www.acslsim.com), SIMAN/Arena, Slam II, Awe-
Sim (www.pritsker.com) and the network simulation tools ns-2 (www.isi. edu/
nsnam/) and OMNeT++ (www.hit.bme.hu/phd/vargaal).

Interesting BLPs occur if we use lags / = (m — 1)/i with small divisors i of the
period m — 1 (note that m is prime). Table 4 shows spectral test results n, for such
cases. These results can be verified theoretically: For these lags the order
of ¢:=a' (mod m) in the multiplicative group Z equals ord(c) =i. Hence,
for prime numbers i we get ¢ —1=0(modm), which implies
l+c+c+...+c7 =0 (modm), and therefore the low quality spectral test
d; = 1/+/i. Now consider non-prime divisors i:

(1) Let i = 6. Thus we get

S—1=CE-DCEE+D) = (= 1)(c*+*+1)=0 (mod m).

© The term long-range correlations may be a bit misleading since it also appears in the theory of
stochastic processes. In our context it refers to a geometric property of linear random number
generators.
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Table 4. Long-range correlations n, among large consecutive blocks from G1

i\s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1

3 2

6 2 1 1 1

7 6

9 2 2 2

11 10

14 6 1 1 1 1 1 1 1

18 2 2 2 1 1 1 1 1 1 1
31 8 8 8 8 8 8 8 4 4 2 2 2 2 2

2)

(€)

(4)

)

Let 4 <s < 6. From (1,c,c? ¢, ¢*, ¢®)-(1,0,0,1,0,0) =c* + 1 =0 (mod m)
we obtain d; = 1/v/2. For dimension s = 3 we use 1+ ¢ + ¢* = 0 (mod m)
and ¢ = —c* (mod m), and get ds = 1/+/3.

For i=9 we similarly use ¢ —1=(c>—1)-(c®+¢* 4 1) =0 (mod m)
which yields d; = 1/\/§ for 7<s<09.

Let i=14. In the same way we use c*—1=(’—1) (' +1)
(=1 -1+ +ct+ S+ B+ +¢2) =0 (mod m), and obtain d, =
1/\/§ for dimensions 8§ < s < 14. For dimension s = 7 we get d7 = 1/\/7 since
(1,¢e,c2, 63, ¢* %) = (1, =8, ¢, —c'0 ¢, —c'?, %) (mod m).

Similar calculations yield the entries for i = 18. Note, that the latter calcu-
lations are valid for arbitrary primitive roots @ modulo m, and hence for all
full period multiplicative LCGs with prime moduli.

For i = 31 the situation slightly changes. In this case, the (bad) spectral test
values in Table 4 depend on the specific multiplier @ = 16807 and on the
modulus m =23 — 1. There are exactly 31 solutions of the equation
x3'—1=0 in Z;. These solutions are x =2% o« =0,...30. The number

¢ =a" D3 s also a solution of x* —1=0. For our example we get
c =2" (mod m) and therefore 8¢*> —1 =0 (mod m), which yields the bad
spectral tests in dimensions s > 3.

4. BLPs: Results of a Computer Search

For several applications of random numbers it is common practice to split the
output of a PRNG into interleaved subsequences (this procedure is also denoted
“leap-frog” technique). In the case of multiplicative LCGs with modulus m and
multiplier @, leaped substreams can be initialized as LCGs by a simple parameter
substitution [38], [57], i.e., for leap factor / we obtain a generator with modulus m
and multiplier ¢ := a’ (mod m), for details see [16], [40]. Therefore, the spectral

test

for Ly(c,m) can be used as a quality measure for leaped sequences, since all

overlapping vectors from a single substream are contained in Ly(c, m). This setting
is related to the situation in the previous section when considering small lags /
instead of large ones.
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In the case of LCGs it easily may happen that the distribution quality of these
subsequences is very bad [15], [40]. Several well known LCGs have been revealed
to exhibit low quality substreams due to the corresponding bad spectral test
results [15], [16]. Since the quality of LCGs in general depends in a very sensitive
way on the parameters, choosing a “‘good” initial generator might not necessarily
assure good quality of the leaped substreams. Below, we give examples of such
“good” initial generators resulting in extremely low quality leaped substreams as
a further class of BLPs. Additionally we consider ““bad” initial generators and
compare the results of these two cases.

First we conduct a computer search for BLPs of the first type: The normalized
spectral test values S; of an initial prime LCG in dimensions s =2,...,8 are
required to exceed threshold ¢ (e.g., Sy > ¢ fors = 2,...,8). This is a very common
criterion often used in literature when searching for good lattice points (however,
the results in the Introduction would suggest to use dimension dependent
thresholds as well in this case since the fixed threshold does hardly demand any
quality restrictions in high dimensions). We randomly generate 650000 multipliers
a satisfying this requirement (where each a needs to be a primitive root addi-
tionally). This assures initial generators with adjustable quality. Subsequently, the
quality of certain subsequences of these generators with leap factor / is evaluated
by applying the spectral test in dimensions s = 2,...,8,16,24 (where 1 < [ < 16,
and / € {2/ : 5<j<9}). In Tables 6 and 7 given below, each entry corresponds
to the amount of bad lattice points found in per mille (%,) for a specific dimension
s and leap factor /. Table 5 shows the thresholds #; which are used to rate bad
lattice points in this case. These thresholds have been selected to obtain 1.49/, bad
lattice points in each dimension (the values have been found again by averaging
over a wide range of moduli).

Table 5. Thresholds used to identify extremely poor quality ““bad” generators

5] 5] 1y ts t6 t7 13 tie 4

0.036 0.084 0.134 0.185 0.227 0.264 0.292 0.455 0.530

Table 6. Results for modulus m = 29! — 1 and “good” initial generators:
amount of bad lattice points in 9,

/ s=2 3 4 5 6 7 8 16 24

1 0 0 0 0 0 0 0 2.52 2.21
2 1.42 1.44 1.49 1.51 1.57 1.68 1.70 2.53 2.27
3 1.49 1.39 1.48 1.61 1.68 1.63 1.64 2.40 2.23
4 1.51 1.41 1.49 1.49 1.61 1.59 1.58 2.40 2.28
5
6

1.37 1.42 1.39 1.46 1.58 1.64 1.63 2.54 2.15
1.41 1.39 1.49 1.50 1.64 1.68 1.67 2.52 2.33

7 1.45 1.40 1.45 1.58 1.53 1.72 1.61 2.49 2.27
23 1.43 1.38 1.55 1.56 1.59 1.71 1.60 2.53 2.23
24 1.44 1.45 1.4 1.46 1.68 1.74 1.71 2.36 2.19
2’ 1.42 1.52 1.49 1.49 1.58 1.55 1.55 2.52 2.23
26 1.31 1.43 1.54 1.52 1.54 1.53 1.75 2.51 2.21
27 1.40 1.40 1.44 1.56 1.65 1.58 1.67 2.49 2.20
28 1.43 1.47 1.43 1.54 1.66 1.66 1.69 2.39 2.20

29 137 148 142 150 166 167 171 246 223
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In order to facilitate the huge amount of computations, LLL [4] is used as an
approximation to the spectral test [18]. Normalization constants for the spectral
test for s > 8 are taken from [42].

Table 6 displays the results for m = 2% — 1 and threshold ¢ = 0.6 which are
considered as initial generators with good quality. In order to generate 650000
multipliers satisfying this condition, 37604048 primitive roots out of 213323609
possible candidates had to be evaluated (this means that 1.73% of the primitive
roots are rated as good). This took about 645 hours on a 1| GHz AMD system. The
lowest spectral test value is found for leap factor / =32 and dimension s =2
where the normalized spectral test equals 0.0006 (a = 2295210864777300077)!
Considering the use of high quality initial generators one might expect a lower
amount of bad lattice points as compared to random sampling (i.e., 1.4%,).
Obviously this is not at all the case. Hence a good initial generator does not assure
good quality of its leaped substreams. In increasing dimensions we see an increase
of the amount of bad lattice points. This phenomenon might originate from the
fact that the thresholds in Table 5 have been estimated using mean values of
percentiles considering a wide range of moduli. The results in Table 6 correspond
to a single Mersenne-prime modulus. The threshold estimates may not be optimal
for this modul for large dimensions. This is subject to further investigations, the
increasing behavior in the tables does not influence the central conclusions of this
section. Recall that the zero entries in the table for / = 1 and s = 2, ..., 8 originate
from our condition to rate an initial generator as being of high quality iff
Ss > 0.6 Vs, s =2,...,8. Initial generators of that type can of course never satisfy
the condition to be rated as bad lattice point with respect to the thresholds ¢ given
in Table 5.

Table 7 displays the results for m = 28! — 1 and poor quality initial generators. In
particular, for being rated as poor quality initial generator, a multiplier need to be
a bad lattice point with respect to the thresholds in Table 5 for dimensions
s =2,...,8. Assuming independence of the involved random variables, an overall
amount of 1% poor quality generators is expected. In order to generate 650000

Table 7. Results for modulus m = 2°' — 1 and “bad” initial generators: amount of BLPs in %,
/ s=2 3 4 5 6 7 8 16 24
1 131.43 13384 136.89 144.76  151.03 154.89 156.82 2.48 223
2 1.36 1.40 1.42 1.53 1.59 1.62 1.66 2.52 2.33
3 1.4 1.48 1.41 1.55 1.68 1.66 1.71 2.53 2.12
4 1.43 1.49 1.42 1.60 1.59 1.64 1.60 2.47 2.11
5 1.32 1.44 1.45 1.57 1.62 1.57 1.65 2.48 2.18
6 1.43 1.41 1.50 1.51 1.68 1.71 1.67 2.48 2.25
7 1.39 1.46 1.48 1.58 1.58 1.60 1.67 2.36 2.26
23 1.41 1.46 1.52 1.57 1.64 1.76 1.65 2.56 2.31
24 1.42 1.39 1.49 1.50 1.64 1.70 1.63 2.44 2.21
23 1.35 1.48 1.33 1.51 1.60 1.74 1.67 2.63 222
26 1.39 1.50 1.47 1.55 1.67 1.65 1.72 2.49 2.27
27 1.42 1.48 1.40 1.53 1.6 1.61 1.69 2.57 2.33
28 1.40 1.47 1.50 1.60 1.62 1.62 1.73 242 2.26

20 1.48 1.46 1.46 1.64 1.61 1.60 1.66 243 2.30
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multipliers satisfying these conditions, 60858324 primitive roots out of 345242561
possible candidates had to be evaluated (this means that 1.07% of the primitive
roots are rated as bad which supports the above mentioned assumption of
independency). This took about 744 hours on a 1 GHz AMD system. One could
expect significantly higher values in the table in this case (a higher amount of bad
lattice points). Again, this is not true at all. The overall impression is that both
tables have entries of roughly the same magnitude, no matter if poor or high
quality initial generators have been used. When comparing the tables in more
detail we observe that about 41% of the entries of Table 6 are even larger (which
means a larger amount of bad lattice points) as compared to the corresponding
entries of Table 7. This means that the quality of the initial generator has no
impact for the quality of its leaped substreams. Therefore, for applications
requiring leaped substreams it makes no sense to test only the initial generators
for their quality. All substreams required for an application need to be tested to
guarantee sufficient quality. Worst lattice points have to be avoided in any case.

However, in contrast to the results with respect to initial generators with high
quality, extremely low spectral test values occur for / = 1 and for / =2,3,4. Asa
matter of fact, all these values result from the small multiplier a = 37 (in Sect. 1,
we called lattices from such small multipliers “worst lattice points”). Recall that
overlapping vectors generated from an LCG with this multiplier are placed on at
most 37 hyperplanes only. Furthermore the numbers a; := a’(mod m), ! =2, 3,4
are in comparison to the magnitude of m small as well (a; = 1369, a3 = 50653 and
as = 1874161). Hence, overlapping vectors from subsequences with step size
[ =2,3,4 are also placed on a few hyperplanes in certain dimensions.

Table 8 finally shows results of computer search involving 200000 multipliers a
where we used the minimum of an averaged spectral test over dimensions
s = 8,16, 24 as a search criterion. We compare high quality initial generators and
initial generators without any quality restriction (i.e., 200000 randomly chosen
primitive roots). Again there are no significant differences in the results no matter
if threshold ¢ = 0.0 (no quality restriction) or ¢ = 0.6 (high quality initial gener-
ators, compare also Table 6) is used.

5. Conclusion

In the present article we introduced and discussed the term ““bad lattice points”
(BLPs) which should be seen as a counterpart to the method of good lattice points
for Monte Carlo and quasi-Monte-Carlo integration. We recommend a definition
of BLPs with respect to certain threshold-vectors for normalized spectral tests. We
further study different possibilities of BLP occurances in the field of random

Table 8. Average spectral test results for m =29 — 1, r=0.0 and t = 0.6

t I=2 3 4 5 6 7 23 24 25 26 27 28 20

00 043 043 045 045 043 044 045 045 045 044 045 046 045
0.6 046 045 043 045 043 046 046 044 045 044 046 043 045
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number generation. In this context, we investigate historical and recent BLP
implementations in form of linear random number generators, and studied pos-
sibilities of BLP appearance as parallel streams of random numbers. A computer
search for the amount of BLPs in parallel streams completes the paper.
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