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1. A Short Overview
In the present paper we study special subsequences of
the CRAY-system random number generator RANF.
Such subsequences are used to obtain parallel streams
of random numbers. RANF is a linear congruential
generator (LCG), and hence it is well known that over-
lapping s-tuples of random numbers generated from
RANF produce grid structures in dimension s ≥ 2. In
Section 3 we give a formal description of the grid struc-
tures which are produced by subsequences of RANF
or similar LCGs. Using the spectral test, which measures
the coarseness of such grids, we analyze the quality of
lagged subsequences with step sizes k = 2l, 1 ≤ l ≤ 10,
which are relevant for CRAY systems. It turns out that
the quality of subsequences with step sizes, especially
for l ≥ 6, is strongly reduced in comparison to the origi-
nal sequence produced by RANF. A sample Monte
Carlo integration study given in Section 4 verifies the
unsatisfactory results obtained by the spectral test. In
Subsection 3.2 we apply the spectral test to exhibit the
well known long-range correlations obtained by split-
ting the output sequence of RANF into consecutive
blocks. Section 2 gives the basic notation and references.

2. Basic Concepts
The multiplicative linear congruential pseudorandom
number generator RANF with modulus m = 248,
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multiplier a = 44485709377909 and the underlying re-
currence xn ≡ a · xn-1 (mod m), 1 ≤ x0 < m, with period
p =246 is (was) implemented on CRAY systems2. For
references or some theoretical and empirical studies
on this generator, see [1 through 12]. Pseudorandom
numbers in the unit interval [0, 1[ are obtained by the
transformation un := xn/m. This type of LCG can be
implemented very efficiently and provides an easy
way to split its output sequence into distinct parallel
streams (see below). Another advantage of LCGs is
the possibility to assess correlations between consecu-
tive pseudorandom numbers by studying the quality
of the underlying lattice structure formed by all s-di-
mensional vectors un = (un,..., un+s–1), n ≥ 0, generated
from the periodic sequence x = (xn)n≥0 (See Section 3).

The quality of LCGs heavily depends on the coarse-
ness of their lattices (e.g., see [8, 13]). In order to find
“optimal” parameters for LCGs, several figures of
merit for the quality of the lattice structure have been
proposed. The most popular measure is the spectral
test which gives the maximal distance ds between ad-
jacent parallel hyperplanes, the maximum being taken
over all families of parallel hyperplanes that cover all
vectors un  (see [1; 8 (Sec. 7.7); 13 (Sec. 3.3.4); 14]). In
other words, ds determines the maximal size of empty
slices (without points un  ) within [0, 1[s . The smaller
ds , the more uniform is the sample space of the points.

Also widely used is a normalized spectral test
Ss := ds/ds , 2 ≤ s ≤ 8, for which 0 ≤ Ss ≤ 1. The latter
figure of merit should be viewed as (normalized) cor-
relation measure (values near 1 imply a “good” lattice
structure, whereas values near 0 exhibit strong corre-
lations within the generated sequence). The constants
ds are absolute lower bounds on ds , see [8 (Sec. 7.7); 13
(pg. 105)]. L’Ecuyer [15] also proposed some lower
bounds ds for dimensions s > 8 in order to compute Ss
for arbitrary dimensions.
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For the spectral test, RANF behaves almost as well
as the best LCGs with modulus 248 given in [1, 8, 15],
except for a negligible deviation in dimension s = 4
(compare Table 1). Normalized spectral tests of RANF
up to dimension s = 8 are also given in [1, 8].

But for certain applications it is not enough to ana-
lyze the lattice structure of LCGs only. Subsequences
of the form

(xkn+j)n≥0 ,  k ≥ 2,  0 ≤ j ≤ k – 1

should be analyzed as well, since these subsequences
are used to get parallel streams of pseudorandom num-
bers for each processor (sometimes called the “leap-
frog” technique, e.g., see [3, 16]). In the case of RANF,
step sizes k = 2l, l ≥ 1 are of special interest, since such
step sizes are implemented on CRAY systems (e.g., see
the Cray Math Library Reference Manual SR–2080).
The splitting process is easily verified by changing the
multiplier in the recurrence in the following way. Let
wn := xkn+j , then with b := ak (mod m) and w0 = aj · x0
(mod m),

wn ≡ b · wn–1 (mod m)

A first analysis of RANF with respect to full-period
subsequences (b ≡ 5 (mod 8)) is contained in [17]. It
turned out that RANF behaves rather robustly with
respect to full-period subsequences. The smallest full-
period subsequence with poor spectral test results is
the one with k = 781 for which we get the bad values
S3 = 0.0212 and S4 = 0.0587. Note that in dimension
three, the vectors u(3) generated from the subsequence
lie on at most n3 = 1599 hyperplanes, whereas the same
vectors produced with the original sequence are placed
on 49,107 hyperplanes. The latter estimates are obtained
by a special variant of the spectral test [14]; see also [8,
Sec. 7.8]. Therefore, the quality of the subsequence is
strongly reduced in comparison to the structure of the

(1)

(2)

n

Table 1.  Spectral tests Ss, 2 ≤ s ≤ 8, of RANF-subsequences with lags 2l

(s)

(s)

l s  = 2 3 4 5 6 7 8

0 0.8269 0.7416 0.3983 0.7307 0.6177 0.6670 0.5642

1 0.4130 0.7071 0.7243 0.3612 0.4488 0.5335 0.7384

2 0.6445 0.5519 0.6460 0.5288 0.6548 0.3528 0.5788

3 0.7877 0.5429 0.3204 0.6805 0.5510 0.6570 0.4324

4 0.6600 0.5093 0.5863 0.5182 0.5849 0.6376 0.6543

5 0.5957 0.6383 0.7469 0.6095 0.3881 0.3896 0.3292

6 0.6285 0.6489 0.5985 0.7557 0.1211 0.1297 0.1875

7 0.2917 0.8355 0.6459 0.2439 0.1359 0.1432 0.1524

8 0.4403 0.7542 0.7841 0.0350 0.0508 0.0913 0.0910

9 0.6008 0.7004 0.0988 0.0402 0.0571 0.1008 0.0993

10 0.7790 0.5691 0.0123 0.0152 0.0341 0.0467 0.0702
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original generator. Figure 1 demonstrates this reduc-
tion by zooms into the three-dimensional unit cube
consisting of all vectors u(3) of RANF and the RANF-
subsequence with step size 781.

What about non-full-period subsequences with step
sizes, for example, k = 2l, l ≥ 1, which are relevant for
CRAY architectures? In this case the period of the
subsequence equals 246–l. Therefore, the underlying
lattice structure differs from those of full-period sub-
sequences with respect to this constant (see below).

In the following section we recall a formal descrip-
tion of the lattice structure formed by overlapping
vectors from 2l-subsequences of LCGs with power-of-
two moduli. From this analysis we obtain a method to
calculate the spectral test for such subsequences. We
will perform a power-of-two subsequence analysis for
RANF. The results show strong quality reductions of
the lattices for step sizes k = 2l, l ≥ 6. More detailed
lattice analyses of subsequences from LCGs are given
in [18] and vectors with arbitrarily shifted indices
from multiple recursive generators are studied in [19].

3. Lattice Analysis
The present section contains a lattice analysis of
RANF-subsequences with step sizes 2l, l ≥ 0. Note
that this analysis applies to an arbitrary linear congru-
ential pseudorandom number generator with power-
of-two moduli as well. For the three standard param-
eterization schemes of LCGs [20, pg. 169] (see also [1,
8, 11]) the set of vectors {u(s) : n ≥ 0} forms a grid
structure. In the case of RANF, a multiplicative LCG
with power-of-two modulus m = 2β and a ≡ 5 (mod 8),
the set of all vectors u(s) is equal to the intersection of

the s-dimensional unit cube [0, 1[s with the shifted lat-
tice

  1 e1 + G with G = {x ∈ Rs : x = ∑ νi · ei, νi ∈ Z}

and lattice basis Β = {e1, ..., es}, defined by the vectors

e1=(1,a,...,as–1)/2β–2, e2=(0,1,0,...,0),..., es=(0,0,...,0,1)

For the proof, see [11, 14, or 20, Thm. 7.6]. The spec-
tral test measures the coarseness of lattice G. The cal-
culation of this test3 is realized using the dual lattice
of G, since the maximal distance of adjacent hyper-
planes ds is equal to one over the length of the short-
est vector of the dual lattice pointed out by Dieter
[14]. An efficient implementation of the spectral test
for multiple recursive generators which supports sub-
sequence analyses is given in [19].

We now describe the lattice structure obtained by
subsequences (1) with step sizes k = 2l, l ≥ 1. Recall
the basic recurrence of RANF xn ≡ a · xn–1 (mod m),
m = 2β, and without loss of generality, x0 = 1. From
[11, Prop. 1] (see also [8, pg. 599]), we get
xn = 4 · xn + 1 where xn ≡ a · xn–1 + (a – 1)/4 (mod
2β–2), x0 = 0, which, by the way, yields the period
p = 2β–2 of x. Using equation (4) in [13, pg. 12], it fol-
lows that for k = 2l, l ≥ 1,

xkn+j = yj + k · zn, n, zn ∈ {0,...,2β–l–2 – 1}

and yj ≡ a · yj–1 + (a – 1)/4 (mod k), y0 = 0. Let j be
fixed; therefore, the set {xkn+j : n ≥ 0} equals {4 · k · u
+ v : u = 0,...,2β–l–2 – 1, v = 4yj + 1}. The latter result
and property (2), applied in exactly the same calcula-
tion as in [14, Sec. 4] yields that the set of overlapping
vectors ukn+j consists of all points of the intersection
of the s-dimensional unit cube [0, 1[s with the shifted
lattice v · e1/2l+2 + G with vector e1 = (1, b,..., bs–1)/

n

3 Our spectral tests have been calculated using a Mathematica
implementation of the Fincke-Pohst algorithm for finding
the shortest vector in a lattice by Wilberd van der Kallen
(http://www.math.ruu.nl/people/vdkallen/kallen.html).

0

0.0002

0

0.0002

0

0.0002

0

0 0002

0

0.0002

0

0.0002

0

0.0002

0

0 0002

Figure 1.  A zoom into the lattice structure of RANF and the RANF-subsequence with step size 781 in dimension three
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246–l, b = ak (mod m). Therefore, the spectral test of
the 2l-subsequences has to be calculated using vector
e1 (with constant 1/246–l!).

Note that if one uses constant 1/246 for the calcula-
tion, this would give the spectral test for the union of
all subsequence-grids. This is not the appropriate way
to assess the subsequence structure. For example, the
RANF–subsequence with step size k = 28 yields the
weak spectral test S5 = 0.03502 whereas for the union
of the subsequence-grids S5 = 0.6625.

3.1 Spectral Test and Lagged Subsequences of RANF
We applied the normalized spectral test Ss , 2 ≤ s ≤ 8,
to RANF subsequences with step sizes k = 2l, 1 ≤ l ≤ 10.
Table 1 shows the results. The original sequence of
RANF behaves very well with respect to this test, but
the results for subsequences start to worsen consider-
ably for l ≥ 6. The latter quality reduction of the subse-
quences is easily verified with our simple Monte Carlo
integration study given below.

Whenever the leapfrog method is applied to power-
of-two LCGs, it should only be performed with “full-
period” lags where the corresponding subsequences
previously have been tested with the spectral test.
Suppose one wants to distribute 28 parallel streams
from RANF to the same number of processors. For
example, consider full-period lagged-subsequences
(1) of RANF with step size k = 28 + 3 and 0 ≤ j ≤ 28 – 1.
Therefore, the spectral test of each subsequence shows
almost the same quality as for RANF, and from the
spectral test results of RANF itself, we can easily

conclude that there are no conspicuous correlations
between the parallel streams.

3.2 Spectral Test and Long-Range Correlations
A different method to get parallel streams of pseudo-
random numbers is to vary the seed x0 and therefore
partition the output sequence x into consecutive blocks
(xkL+n)L–1 , k ≥ 0, of a given length L. This approach
was studied extensively by DeMatteis et al. [4, 6, 21,
22]. It turns out that only small fractions of sequences
produced by an LCG can safely be used because of the
well known long-range correlations which may impose
unwanted correlations between the parallel streams.
Long-range correlations of RANF have been studied
in the latter papers.

Using the spectral test to assess such correlations
was already suggested by Durst [7] and related con-
cepts can be found in [5, 10]4. Similar to DeMatteis et
al., the latter authors applied their concepts only in
dimension two for computational and mathematical
reasons.

We will perform a “long-range” correlation analy-
sis of RANF also in higher dimensions s. Thus we
have to analyse the grid structure which contains all
vectors:

(xi, xi+L, xi+2 · L, ..., xi+(s–1) · L), i ≥ 0, s ≥ 2

Elementary calculations yield that the spectral test
can be applied to the same lattice as in (3), but with
vector e1 = (1, b, ..., bs–1)/246, b = aL (mod m).

j s  = 2 3 4 5 6 7 8

10 0.7636 0.8322 0.8468 0.0115 0.0202 0.0413 0.0455

11 0.5808 0.4564 0.1662 0.0115 0.0202 0.0413 0.0455

12 0.7154 0.6941 0.0208 0.0115 0.0202 0.0413 0.0455

13 0.9788 0.5488 0.0026 0.0044 0.0121 0.0191 0.0322

14 0.2435 0.8288 0.0013 0.0044 0.0121 0.0191 0.0322

j s  = 2 3 4 5 6 7 8

7 0.4162 0.4491 0.4660 0.6344 0.5289 0.6972 0.6243

8 0.5914 0.6040 0.4525 0.6902 0.5179 0.7217 0.6115

9 0.7761 0.4099 0.3770 0.6642 0.7332 0.7578 0.6622

10 0.8316 0.6327 0.4392 0.3713 0.5662 0.5703 0.4853

11 0.9358 0.5259 0.7078 0.6060 0.6647 0.6780 0.5116

Table 2.  Correlation analysis of consecutive blocks from RANF with L = 2j using the spectral test Ss, 2 ≤ s ≤ 8

4 In these papers, the parallel streams are initialized via the additive term of the LCG.
Related concepts applied to prime LCGs have recently been published by Mascagni [31].

Table 3.  Correlation analysis of consecutive blocks from RANF with L = 3j using the spectral test Ss, 2 ≤ s ≤ 8

(5)

n=0
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Table 2 shows normalized spectral test results for
such lattices with block lengths L = 2j, 10 ≤ j ≤ 14. Note
that these results are equal to spectral tests of the union
of all lattices from lagged subsequences (1) with step
size k = L and 0 ≤ j < L. As can be seen from Table 2,
no practical relevant consecutive blocks of RANF with
power-of-two block sizes should be used in practice.

Using odd block lengths L (hence the block length
does not divide the period of the generator which also
implies that the multiplicative LCG with multiplier aL

(mod m has full period) provides a simple way against
correlations between consecutive blocks obtained from
power-of-two LCGs. But previous testing is recom-
mended in this case as well. Table 3 shows normalized
spectral tests Ss, 2 ≤ s ≤ 8, using RANF for block lengths
L = 3j , 7 ≤ j ≤ 11. Similarly, as the results in Table 3,
there are no conspicuous correlations for 12 ≤ j ≤ 29.

4. Monte Carlo Integration
In order to demonstrate the effects of the splitting of
RANF into subsequences with step sizes 64, 128, 256,
we performed a sample Monte Carlo integration study.
We consider the problem of numerical integration in

dimension s ≥ 1, see [20]. Denote by n ∈ N a sample
size and choose a test function f : Is → R, I = [0, 1[. Put:

∈(f,ψ,n) := Sn(f, ψ) – ∫Is f(ξ) dξ,  Sn(f,ψ) := n  ∑  f(ψi)

the integration error arising from the Monte Carlo ap-
proximation Sn(f,ψ) with the sequence ψ = (ψi),
i = 0, 1..., n–1, ψi ∈ Is of integration nodes. Under the
assumption that ψ is a sequence of independent ran-
dom variables distributed uniformly on Is and that f ∈
L1 , i.e., the integral exists and is finite, the strong law
of large numbers guarantees almost sure convergence
of the error to zero as n increases to infinity. As a test
function we have chosen the polynomial f(x1, x2, ...,
xs) = ∏i=1 g(xi), with g(x) := xr – 1/(r – 1), r = 20.
The integral of this function equals zero. An analysis
of the impact of the parameter r on integration results
can be found in [23]. Similar results to those given be-
low have been obtained also for small powers r (for
r = 5, see [9]).

The graphics in Figure 2 show the results for dimen-
sion s = 8. The bold line reports the standard estimator
for the integral based on 64 independent samples of
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Figure 2.  Monte Carlo integrations with RANF with sample sizes
221 ,..., 228, dimension 8 and subsequences with step sizes k = 2l, l = 0, 6, 7, 8
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the Monte Carlo approximation for each sample size n
= 221,...,228, whereas the shaded area corresponds to
an estimated 99% confidence interval based on the
t-distribution (see [23, 24]). The horizontal line labeled
with 0 represents the true value of the integral.

The first graphic shows the results for the original
RANF-sequence. RANF shows almost optimal spec-
tral test results. The empirical results are unsuspicious
too, as the true value of the integral never lies outside
the 99% confidence interval. For the RANF-subse-
quences with step sizes 128 and 256 (our parallel
setup, i.e., the implementation of the splitting proce-
dure is described in [23, 24]) the coarseness of the lat-
tice in these dimensions clearly shows up in the
empirical results where the generator is rejected at a
99% level of confidence in a large range of sample
sizes. The reduced quality of the subsequence with
step size 64 does not affect the Monte Carlo integra-
tion as can be seen from the second graphic.

5. Conclusion
Using the spectral test we have analyzed the quality
reduction of subsequences of the CRAY system gen-
erator RANF. The results show that for serious simu-
lation problems the usage of RANF subsequences
with step sizes 64, 128, 256, 512, . . . may lead to bad
simulation results, which is due to the reduced qual-
ity of the underlying lattice structures of overlapping
vectors produced by such subsequences.

From our results we strongly suggest running
a priori tests whenever subsequences of linear congru-
ential generators are used. These types of generators
are until now the best analyzed and most widely used
pseudorandom number generators, and many up-to-
date generation methods with high periods are
equivalent or approximately equivalent to large size
linear generators [16, 25]. However, even if the period
is large, a variation in the parameters which is, for ex-
ample, caused by the use of subsequences may lead to
unexpected behavior (see also [26]).

Power-of-two LCGs such as RANF or the ANSI C
generator drand48() [2, 3, 17, 25] are no longer rel-
evant for actual simulation problems due to the
strong regularities in the least significant bits [13, pg.
12] which are also responsible for the aforementioned
bad quality of lagged subsequences with large power-
of-two step sizes (see Equation (4)).

On parallel architectures one has to apply more up-
to-date generators [27, 28] or explicit inversive con-
gruential generators [29] which are slower than linear
generators but known to be stable with respect to
splitting [30].
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