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QUASI-MONTE CARLO METHODS FORNUMERICAL INTEGRATION OF MULTIVARIATEHAAR SERIES II �KARL ENTACHER yDepartment of Mathematics, University of Salzburg, Hellbrunnerstr. 34A-5020 Salzburg, Austria. email: Karl.Entacher@sbg.ac.atAbstract.The present paper contains a comparison of di�erent classes of multivariate Haarseries that have been studied with respect to numerical integration, new properties ofE�s -classes and numerical results.AMS subject classi�cation: Primary 65D30, 42C10.Key words: Multivariate Haar series, numerical integration, generalized Haar func-tions, low-discrepancy point sets, quasi-Monte Carlo methods.1 IntroductionIn [3] we studied classes of multivariate Haar series f to the base b � 2, calledb ~E�s (C)-classes, and their numerical integration using (t;m; s)-nets P = (xn)N�1n=0to the base b as node sets for the integration ruleZ[0;1[s f(x) dx � 1N N�1Xn=0 f(xn):(1.1)Sobol' [10] already studied special classes of Haar series to the base 2 with respectto numerical integration. Searching an optimal node set to integrate his classes,he de�ned the (t;m; s)-nets to base 2 (originally called P� -nets). Niederreitergeneralized the (t;m; s)-nets to arbitrary bases and gave e�cient constructionmethods and an exhaustive theory (e.g. see [8]).The present paper completes the studies in [3] in the sense that we comparethe di�erent classes of multivariate Haar series that have been studied withrespect to numerical integration. In Section 3 we will consider Sobol's Sp- andH�-classes (the Sp-classes will be de�ned for arbitrary integer bases b � 2) andcompare them to our b ~E�s (C)-classes. The Sp- and b ~E�s (C)-classes are de�nedusing resolution dependence only. Hence the basic ideas in Section 3 probablymay be extended to other wavelet systems on compact intervals. Section 4contains a comparison of the integration error estimates for these classes andnumerical results. Finally, in Section 5 we will give supplementing properties ofb ~E�s (C)-classes.�Received March 1997. Revised Juli 1997. Communicated by Tom Lyche.yResearch supported by the Austrian Science Foundation (FWF), project no. P11143-MAT.



2 K. ENTACHER2 Generalized Haar function systemsIn the following we �x an arbitrary integer base b � 2. For the notations andde�nitions of generalized Haar functions relative to base b, see [3, 4]. In thissection we recall the basic notations:For an integer k � 0 and an arbitrary number x 2 [0; 1[, let k =P1j=0 kjbj andx =P1j=0 xjb�j�1, kj ; xj 2 f0; 1; : : : ; b� 1g, be the b-adic expansions of k andx in base b. For g 2 N we de�ne k(g) :=Pg�1j=0 kjbj and x(g) :=Pg�1j=0 xjb�j�1.Further let k(0) := 0 and x(0) := 0: The support of a given Haar function hk,k � 0, is equal to an elementary b-adic interval. We now de�ne sets of integersk, for which such intervals have the same length (resolution).Definition 2.1.(1) Let g be a nonnegative integer. Then �(g) := fk 2 N : bg � k < bg+1g.Further, let �(�1) := f0g, and the sets N0 := N [ f0g, and N1 =N0 [ f�1g:(2) If g = (g1; : : : ; gs), s � 2 and gi 2 N1, then �(g) :=Qsi=1�(gi).Definition 2.2.Let eb : Zb ! K, where Zb = f0; : : : ; b� 1g is the least residue system modulo b,and K := fz 2 C : jzj = 1g, denote the function eb(a) := exp(2�iab ); (a 2 Zb):The k-th Haar function hk; k � 0, to the base b is de�ned as follows: If k = 0,then h0(x) := 1 8x 2 [0; 1[. If k 2 �(g), g � 0, thenhk(x) := b g2 � b�1Xa=0 eb(a � kg) � 1Dk(a)(x);with elementary b-adic intervals Dk(a) := [(b k(g)+a)=bg+1; (b k(g)+a+1)=bg+1[.The k-th normalized Haar function Hk on [0; 1[ is de�ned as H0 := h0 and, ifk 2 �(g), g � 0, then Hk := b� g2 � hk:Hence, the support Dk of the k-th Haar function hk is given as the followingelementary b-adic interval : If k = 0, then D0 := [0; 1[: If k 2 �(g), g � 0, thenDk := Sb�1a=0Dk(a) = [k(g)=bg; (k(g) + 1)=bg[.Definition 2.3. Let Hb := fhk : k := (k1; : : : ; ks) 2 Ns0g denote the Haarfunction system to the base b on the s-dimensional torus [0; 1[s; s � 1. The k-thHaar function hk is de�ned as hk(x) :=Qsi=1 hki(xi); x = (x1; : : : ; xs) 2 [0; 1[s:The normalized version Hk is de�ned in the same way and the supports of hkand Hk are de�ned as Dk :=Qsi=1Dki :3 Classes of multivariate Haar seriesConsider f 2 L1([0; 1[s; �s), where �s denotes the Lebesgue measure on thes-dimensional unit cube [0; 1[s, s � 2. For k = (k1; : : : ; ks) 2 Ns0 let r be thenumber of components ki with ki � 1 ( kj = 0 for j 6= i). Therefore a Haarseries sf of f has the formsf (x) := f̂(0) + sXr=1 X1�i1<:::<ir�s 1Xkij=1 f̂r(k) � hki1 (xi1 ) � � �hkir (xir )(3.1)



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 3with Haar coe�cientsf̂r(k) := Z[0;1[s f(x) � hki1 (xi1 ) � � �hkir (xir ) dx(3.2)Let f � sf and sf absolutely convergent. Using a point set P = (xn)N�1n=0 ,xn = (x(n)1 ; : : : ; x(n)s ) 2 [0; 1[s, in rule (1.1) to approximate the integral we obtainthe following form of the integration errorRN (f;P) = ������ sXr=1 X1�i1<:::<ir�s 1Xkij=1 f̂r(k) � 1N N�1Xn=0 hki1 (x(n)i1 ) � � �hkir (x(n)ir )������� sXr=1 X1�i1<:::<ir�s 1Xgij=0 b 12 (gi1+:::+gir ) Xkij2�(gij )jf̂r(k)j � jS(r)N (Hk;P)j;(3.3)with S(r)N (Hk;P) := 1N N�1Xn=0 Hki1 (x(n)i1 ) � � �Hkir (x(n)ir ):(3.4)It follows that the point set P enters the integration error only with the orderof magnitude of the \Weyl" sums S(r)N (Hk;P), hence depends only on the Haarfunction system. The so called (t;m; s)-nets to the base b are point sets P ,consisting of N = bm points, which satisfy certain local conditions suitable tothe local de�nition of the Haar functions. It follows that the Weyl sums vanishfor a large set of resolutions g near the origin, more preciselySN (hk;P) = 0 for all k 2 �(g) and g with sXi=1(gi + 1) � m� t:Further, for arbitrary (t;m; s)-nets to the base b for the remaining resolutionsit follows that jSN(Hk;P)j � b�(gi1+:::+gir ) for all k 2 �(g), and g with m�t <Psi=1(gi+1) < m� t+r, and ifPsi=1(gi+1) � m� t+r, then there are at most(b� 1)rbm vectors k 2 �(g) with jSN (Hk;P)j 6= 0. In the latter case we havejSN (Hk;P)j � bt�m (see [3, Lemma 4.2]). For special construction methodsthese estimates may be improved. Examples are given in [2]. For the generalde�nition of (t;m; s)-nets and e�cient construction methods see [1, 6, 8].The main goal in numerical integration is to �nd large classes of functionswhich guarantee best possible integration errors. If we, for example, considerclasses of multivariate Haar series with in a certain sense bounded Haar coef-�cients we are able to estimate the integration error (3.3). In [3] we observedHaar series where the Haar coe�cients above are bounded in the following wayjf̂r(k)j � C � b��(gi1+:::+gir ) =: C � �b(k):(3.5)Haar series with this property are called b ~E�s (C)-classes. For the exact de�nitionand properties see [3, Sect. 2.2]. This approach is due to Korobov [5] who studied



4 K. ENTACHERmultivariate Fourier series. We changed Korobov's condition slightly in order toget a resolution dependency only.Sobol' [10] studied more general classes called Sp, p � 1, classes. We willde�ne these classes for arbitrary bases b � 2. Let 1 � p < 1 and q such that1=p+ 1=q = 1. Applying H�older's inequality in (3.3),Xkij2�(gij )jf̂r(k)j � jS(r)N (Hk;P)j � 24 Xkij2�(gij )jf̂r(k)jp35 1p � 24 Xkij2�(gij )jS(r)N (Hk;P)jq35 1q ;yields a more general estimate of RN (f;P). This estimate suggests the followingde�nition, see also [10, p. 133].Definition 3.1. For 1 � p <1 letA(i1;:::;ir)p (sf ) := 1Xgij=0 b 12 (gi1+:::+gir ) 24 Xkij2�(gij )jf̂r(k)jp35 1p :(3.6)A Haar series sf belongs to the class S(b)p (Ai1;:::;ir) if A(i1;:::;ir)p (sf ) � Ai1;:::;ir ,for upper bounds Ai1;:::;ir > 0 (which only depend on the resolutions gi1 ; : : : ; gir)and for all 1 � i1 < : : : < ir � s, 1 � r � s.If sf 2 S(b)p (Ai1;:::;ir ) then sf converges absolutely and uniformly (see [10,p. 134]). Further, for 1 < p < p0, we have S(b)1 (Ai1;:::;ir ) � S(b)p (Ai1;:::;ir ) �S(b)p0 (Ai1;:::;ir ). The next proposition shows the relation between b ~E�s (C)- andS(b)p -classes.Proposition 3.1. If � := �� 12 � 1p > 0, thenb ~E�s (C) � S(b)p (Ai1;:::;ir ) for Ai1;:::;ir = C � (b� 1) rp �� b�b� � 1�rThe proof is veri�ed easily if we estimate A(i1;:::;ir)p (sf ) using (3.5). The inclu-sion in Proposition 3.1 is strong. For example let s = 1 and A > 0. The Haarseries sf with f̂(k) := ( Ab g2 � 6�2g2 : k = bg; g � 10 : otherwisebelongs to S(b)p (A) and not to any class b ~E�s (C) for � > 1=2 + 1=p.Sobol' also studied classes H��(Li1;:::;ir ). Let s = 1. A class H��(L), 0 <�� � 1, L > 0 consists of all functions f : [0; 1[�! R, where 8x; y 2 [0; 1[ :jf(x)�f(y)j � Ljx�yj��. The multidimensional case H��(Li1;:::;ir ), which di�ersfrom general H�older - classes, is de�ned in [10, p. 136]. From [10, p. 141: (4.25)]we obtain jf̂r(k)j � Li1;:::;ir rYj=1 2�(gij+1)(��+ 12 )� 12� maxi1;:::;ir Li1;:::;ir2(��+1) � 12(��+ 12 )(gi1+:::+gir ) ;



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 5and therefore the following proposition.Proposition 3.2. Let 0 < �� � 1 and s � 2, thenH��(Li1;:::;ir ) � 2 ~E ��+ 12s (D) with D := maxi1;:::;ir Li1;:::;ir2(��+1) :The inclusion again is strong. An example of our 2 ~E�s (C)-classes which doesnot belong to H��(Li1;:::;ir ) is the step function (1) in [3, Sect. 2.3].4 Estimates of the integration error and numerical resultsIn this section we compare integration error estimates for the di�erent classesof Sect. 3 if we use (t;m; s)-nets to calculate the integral approximation (1.1).Theorem 4.1. Let P = fx0; : : : ;xN�1g be a (t;m; s)-net to the base b � 2.(a) If f 2 b ~E�s (C) and A :=P1i=1 is�1b( 12��)i, thenRN (f;P) � C �A � (1 + 2s�1)b(�+ 12 )s(log b)s�1 � b(�+ 12 )�t � (log N)s�1N (�� 12 ) :(b) If f 2 S(b)p (Ai1;:::;ir ) and q with 1=p+ 1=q = 1, thenRN (f;P) � (b� 1) sq � (bt + b t+sp ) �A0 � 1N 1p ; A0 := sXr=1 X1�i1<:::<ir�sAi1;:::;ir :Remark 4.1. Note that our estimates for S(b)p (Ai1;:::;ir )-classes are valid forarbitrary (t;m; s)-nets in base b and they are more precise than those of Sobol'(see [10, p. 228,239]). Using P� -nets to integrate H��(Li1;:::;ir )-classes, Sobol'[10, p. 239] obtained an estimate of the integration error in the same order ofmagnitude as in (a). The estimate in (a) is best possible for b ~E�s (C)-classes [2].Proof. The proof of Part (a) is given in [3, Part (c), Sect. 4.1]. To provePart (b) we apply H�older's inequality in (3.3). Then, from the estimates of theWeyl sums given above, we obtain RN (f;P) �sXr=2 X1�i1<:::<ir�s m�t�1Xgi1 ;:::;gir=0m�t�r<gi1+:::+gir<m�t(b� 1) rq � b( 12� 1p )(gi1+:::+gir ) 24 Xkij2�(gij )jf̂r(k)jp35 1p
+ sXr=1 X1�i1<:::<ir�s 1Xgi1 ;:::;gir=0gi1+:::+gir�m�t(b�1) rq �b(t�mp ) �b 12 (gi1+:::+gir ) 24 Xkij2�(gij )jf̂r(k)jp35 1pFor f 2 S(b)p (Ai1;:::;ir ) it follows thatRN (f;P) � b�m=p sXr=2(b� 1)r=q � b(t+r)=p X1�i1<:::<ir�sAi1;:::;ir+ b�m=p sXr=1(b� 1)r=q � bt X1�i1<:::<ir�sAi1;:::;ir ;and this yields the result.



6 K. ENTACHERAs a numerical example we consider the function F : [0; 1[s�! R, withF (x1; : : : ; xs) := (x1 + : : :+ xs)n; n 2 N:(4.1)This function belongs to 2 ~E 32s (C)-classes. Using digital (t;m; s)-nets P from theSalzburg Tables [6] to calculate the approximation (1.1), we obtained the resultsin Figure 4.1 for the integration error RN (F;P), N = 223. The polynomialsproviding the nets and the corresponding quality parameters t are given in [6,Table 2]. The graphics demonstrates the behavior of the error (logarithmic scalein base 10) for increasing n and dimensions 3 � s � 15.
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Figure 4.1: Integration errors with (t;m; s)-nets.5 Further results for b ~E�s (C)-classesIn this section we present two results for b ~E�s (C)-classes which supplement thestudies given in [3]. From a basic property of digital (t;m; s)-nets we immediatelyobtain the following result (compare also to [7, Thm. 2 (b)]).Proposition 5.1. For all � > 1=2, C > 0 and all b and s � 2 we have: Forall t and m for which there exists a digital (t;m; s)-net in base b, there is such anet and a function f 2 b ~E�s (C) withRN (f;P) = (b� 1) � b(�� 12 )b(�� 12 ) � 1 � b(�� 12 )t � 1N (�� 12 ) :Proof. From the proof of [9, Lemma 3c] we get the following property ofdigital (t;m; s)-nets: For all t and m for which there exists a digital (t;m; s)-net in base b, there is such a net Pt where the �rst m � t rows of C(1) equalthe �rst m � t rows of the identity matrix and the remaining rows are zerovectors. Therefore the �rst coordinates x(n)1 , 0 � n < bm, of Pt cover the setf0; 1=bm�t; : : : ; (bm�t � 1)=bm�tg.



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 7Consider the Haar seriesPk2Ns0 f̂(k) � hk(x); x 2 [0; 1[s wheref̂(k) := ( Cb�g : k 2 �(g); g = (g;�1; : : : ;�1); g � 00 : otherwise :For this function we getRN (f;Pt) = ������ 1Xg=0 Xk2�(g) Cb(�� 12 )g � 1N N�1Xn=0 Hk(x(n)1 )������ :From [3, Lemma 4.1] we obtain the result.In the following we will observe [3, Thm. 3.2] in reverse direction. The result isan analogue to [7, Lemma 8] where generalized Walsh functions are used insteadof Haar functions. Note that in our case there are no further limitations on theparameters � > 1=2, due to the local structures of Haar functions.Theorem 5.2. If f 2 B ~E�s (C) with B = bL; L � 2, and � > 1=2, thenf 2 b ~E�s (C � C(�; b)s) where C(�; b) := B(�+ 12 )b(�+ 12 ) � 1B B�1Xa=1 1sin � aB :Proof. Let B = bL, L � 2, for a given base b � 2. The result is proven byinduction in a similar way as [3, Thm. 3.2]. To avoid too many indices, we shalldenote the Haar coe�cients of a given function f with respect to the system HBby f̂(n), hence with argument n. Further we will use the argument k to signifythat f̂(k) denotes the Haar coe�cient of f with respect to the Haar system Hb.We start with dimension s = 1.For B�g � n < B�g+1, �g 2 N0, the Haar function h(B)n 2 HB has a �nite Haarseries with respect to the system Hb, more preciselyh(B)n (x) = B�g+1�1Xk=B�g dh(B)n (k) � hk(x):(5.1)Therefore, if f 2 B ~E�1 (C), � > 1=2, we obtain the following form of f̂(k),f̂(k) = B�g+1�1Xn=B�g f̂(n) �dh(B)n (k) for B�g � k < B�g+1:(5.2)Consider integers n; k with B�g � n < B�g+1, �g � 0 and k 2 �(g) with g =L�g + j; 0 � j < L . Further let us de�neEa := Dk(a) = [�(a); �(a+1)[ with �(a) := k(g)bg + abg+1 ; 0 � a < b:



8 K. ENTACHERTherefore we have dh(B)n (k) = b g2 b�1Xa=0 eb(a � kg) �d1Ea(n):(5.3)The latter result and (5.2) implyjf̂(k)j � b g2 � CB�g� � B�g+1�1Xn=B�g b�1Xa=0 jd1Ea(n)j:(5.4)From Hellekalek [4, Lemma 3.2], we observe that we may have d1Ea(n) 6= 0 onlyif n(�g) 2 fB�g ��(a)(�g); B�g ��(a+1)(�g)g, and in this case it follows that jd1Ea(n)j �B(� �g2�1)= sin� n�gB . Hence we have to analyze for which B�g � n < B�g+1 and0 � a � b the equation n(�g) = B�g � �(a)(�g) holds. Comparing the B-adicexpansions of n(�g) and B�g � �(a)(�g) implies that for arbitrary a 2 f0; : : : ; bgthere are B � 1 such numbers n (n(�g) is �xed and n�g varies in f1; : : : ; B � 1g).Using (5.4) we observe thatjf̂(k)j � C � B�(�� 12 )�g � b( g2+1) � 1B B�1Xj=1 1sin� jB(5.5) � C � C(�; b) � 1b�g ;(5.6)and this yields the result for dimension s = 1. As an induction hypothesis, weassume that f 2 B ~E�s�1(C) implies f 2 b ~E�s�1(C � C(�; b)s�1). Thereforef(x) = Xk2Ns�10 f̂b(k) � hk(x) = Xn2Ns�10 f̂B(n) � h(B)n (x); x 2 [0; 1[s�1;with jf̂b(k)j � C � C(�; b)s�1 � �b(k) and jf̂B(n)j � C � �B(n). Let f 2 B ~E�s (C).This yields jf̂B(n1; : : : ; ns)j � C � �B(n1) � �B(n), n = (n2; : : : ; ns), and thereforef(x1; : : : ; xs) = 1Xn1=00@ Xn2Ns�10 f̂B(n) � h(B)n (x)1A| {z }2B ~E�s�1(C � �B(n1)) �h(B)n1 (x1); x = (x2; : : : ; xs):By induction, we getf(x1; : : : ; xs) = 1Xn1=00@ Xk2Ns�10 f̂ (n1)b (k) � hk(x)1A � h(B)n1 (x1);
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