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Abstract.

The present paper contains a comparison of different classes of multivariate Haar
series that have been studied with respect to numerical integration, new properties of
E¢-classes and numerical results.
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1 Introduction

In [3] we studied classes of multivariate Haar series f to the base b > 2, called
» E2(C)-classes, and their numerical integration using (,m, s)-nets P = (x,) =
to the base b as node sets for the integration rule
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Sobol’ [10] already studied special classes of Haar series to the base 2 with respect
to numerical integration. Searching an optimal node set to integrate his classes,
he defined the (t,m,s)-nets to base 2 (originally called P,-nets). Niederreiter
generalized the (¢, m, s)-nets to arbitrary bases and gave efficient construction
methods and an exhaustive theory (e.g. see [8]).

The present paper completes the studies in [3] in the sense that we compare
the different classes of multivariate Haar series that have been studied with
respect to numerical integration. In Section 3 we will consider Sobol’s Sp,- and
H,-classes (the Sp-classes will be defined for arbitrary integer bases b > 2) and
compare them to our ,E(C)-classes. The S,- and , E%(C)-classes are defined
using resolution dependence only. Hence the basic ideas in Section 3 probably
may be extended to other wavelet systems on compact intervals. Section 4
contains a comparison of the integration error estimates for these classes and
numerical results. Finally, in Section 5 we will give supplementing properties of
yE2(C)-classes.
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2 Generalized Haar function systems

In the following we fix an arbitrary integer base b > 2. For the notations and
definitions of generalized Haar functions relative to base b, see [3, 4]. In this
section we recall the basic notations:

For an integer k > 0 and an arbitrary number z € [0, 1], let k = =72 k;b7 and
T = Z;O:O z;b771 ki, x; € {0,1,...,b— 1}, be the b-adic expansions of k and
z in base b. For g € N we define k(g) := Z?:o k;b? and z(g) := Zj:(] z;b 7L
Further let £(0) := 0 and =(0) := 0. The support of a given Haar function hy,
k > 0, is equal to an elementary b-adic interval. We now define sets of integers
k, for which such intervals have the same length (resolution).

DEFINITION 2.1.

(1) Let g be a nonnegative integer. Then A(g) := {k € N : b9 < k < b9H1}.
Further, let A(—1) := {0}, and the sets Ng := N U {0}, and N; = Ny U {-1}.
(2) Ifg=(91,---,9s), s > 2 and g; € Ny, then A(g) :=[[;_, Alg:)-

DEFINITION 2.2,

Let ey : Zy — K, where Zy, = {0, ...,b— 1} is the least residue system modulo b,
and K := {2 € C : |z| = 1}, denote the function e;(a) := exp(27i}), (a € Zy).
The k-th Haar function hy, k > 0, to the base b is defined as follows: If k = 0,
then ho(z) :=1 Vz €[0,1]. If k € A(g), g > 0, then

o>
|

1

hi(@) =02 - ey(a-ky) - 1p,(a) (@),

a=0

with elementary b-adic intervals Dy (a) := [(bk(g)+a) /b9, (bk(g)+a+1) /b9
The k-th normalized Haar function Hy on [0,1] is defined as Hy := hg and, if
ke Alg), g>0, then Hy :=b~% - hy,.

Hence, the support Dy of the k-th Haar function hj is given as the following
elementary b-adic interval : If £k = 0, then Dg := [0,1]. If k € A(g), g > 0, then
Dy = Uy Dila) = [k(g) /b°, (k(g) + 1)/b0].

DEFINITION 2.3. Let Hp := {hy : k := (k1,...,ks) € N3} denote the Haar
function system to the base b on the s-dimensional torus [0,1[%, s > 1. The k-th
Haar function hy is defined as hy(x) := [[i_, b, (i), x = (z1,...,35) € [0, 1[5
The normalized version Hy is defined in the same way and the supports of hy
and Hy are defined as Dy := [];_, D,.

3 Classes of multivariate Haar series

Consider f € L'([0,1[%,\s), where \s; denotes the Lebesgue measure on the
s-dimensional unit cube [0,1[*, s > 2. For k = (k1,...,ks) € N{ let r be the
number of components k; with k; > 1 ( k; = 0 for j # ). Therefore a Haar
series sy of f has the form

(31) Sf :f +Z Z Z fr le)"'hkir(xir)

r=1 1<iy1<...<ip<s k; ._1
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with Haar coefficients

(3.2) Fo(k) = /[0 | T00 P T o)

Let f E( )Sf and s; absolutely convergent. Using a point set P = (x,)N=',

xn, = (21",...,2{) € ]0,1[%, in rule (1.1) to approximate the integral we obtain
the following form of the integration error

s 00 N-1
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n=0

r=1 1<i;<...<ip<s ki]. =1

(33) < Y Y Y prlateten) S ()] - SY (H, P)l,

r=1 1<i;<...<ip<s gl-j:() ki]. EA(gij)
with
1 N-1
(3.4) S (Hi P) 1= 5 D Hu, (af})) -+~ i, (&):
n=0

It follows that the point set P enters the integration error only with the order
of magnitude of the “Weyl” sums Sy (Hy, P), hence depends only on the Haar
function system. The so called (¢,m,s)-nets to the base b are point sets P,
consisting of N = ™ points, which satisfy certain local conditions suitable to
the local definition of the Haar functions. It follows that the Weyl sums vanish
for a large set of resolutions g near the origin, more precisely

Sy(hi,P)=0 forall ke A(g) and g with Y (gi+1) <m—t.

i=1

Further, for arbitrary (¢, m, s)-nets to the base b for the remaining resolutions
it follows that |Sx(Hy, P)| < b~(@irt+9ir) for all k € A(g), and g with m—t <
iz (9i+1) <m—t+r,and if 337_, (g:+1) > m—t+r, then there are at most
(b—1)"b™ vectors k € A(g) with |Sy(Hy,P)| # 0. In the latter case we have
|Sn (Hy, P)| < b'~™ (see [3, Lemma 4.2]). For special construction methods
these estimates may be improved. Examples are given in [2]. For the general
definition of (¢, m, s)-nets and efficient construction methods see [1, 6, §].

The main goal in numerical integration is to find large classes of functions
which guarantee best possible integration errors. If we, for example, consider
classes of multivariate Haar series with in a certain sense bounded Haar coef-
ficients we are able to estimate the integration error (3.3). In [3] we observed
Haar series where the Haar coefficients above are bounded in the following way

(3.5) fr(K)| < C bl teton) = O 5y (k).

Haar series with this property are called bE;’(C’)—classes. For the exact definition
and properties see [3, Sect. 2.2]. This approach is due to Korobov [5] who studied
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multivariate Fourier series. We changed Korobov’s condition slightly in order to
get a resolution dependency only.

Sobol’ [10] studied more general classes called S,, p > 1, classes. We will
define these classes for arbitrary bases b > 2. Let 1 < p < oo and ¢ such that
1/p+1/q = 1. Applying Holder’s inequality in (3.3),

P q

YoM ISY H P < | D IAP] | DD ISY (H P

ki; €A(g:;) ki; €A(g:;) ki; €A(g:;)

yields a more general estimate of Ry (f, P). This estimate suggests the following
definition, see also [10, p. 133].
DEFINITION 3.1. For 1 <p < oo let

(e}
(3.6) A}(Dil,...,ir)(sf) — Z p3(9iy - tain) Z \fr(k)\p
9i; =0

ki; €A(g:;)

A Haar series sy belongs to the class S\ (Ai, ...i,) if Agl’””“)(sf) < Ay
for upper bounds A;, ...;. > 0 (which only depend on the resolutions g;,,...,9:.)
and for all 1 <41 < ... <1, <s,1<r <s.

If sy € S (Ai . i,) then sy converges absolutely and uniformly (see [10,
p. 134]). Further, for 1 < p < p/, we have S{" (4, ;) C S8 (Ay,..i,) C
51(,17)(142'1,...,1‘,,)- The next proposition shows the relation between bENSf'“(C)- and

Sy-classes.
PROPOSITION 3.1. If f:=a — § — £ >0, then
v\
' (bﬁ - 1)
The proof is verified easily if we estimate Agl’””“) (sy) using (3.5). The inclu-
sion in Proposition 3.1 is strong. For example let s = 1 and A > 0. The Haar
series sy with

b B (C) C S (Aiy..i,) for Ay i, =C-(b—1)

A bt

s s k=bg2>1
' 0 : otherwise

belongs to S{*’ (A) and not to any class yEX(C) for a > 1/2 + 1/p.

Sobol” also studied classes Hs(L;,,.. ;). Let s = 1. A class Hz(L), 0 <
a < 1, L > 0 consists of all functions f : [0,1[— R, where Vz,y € [0,1] :
|f(z)—f(y)] < L]z —y|*. The multidimensional case Hs (L, ..., ), which differs
from general Holder - classes, is defined in [10, p. 136]. From [10, p. 141: (4.25)]
we obtain

IA

| fr ()] Li, .. HQ—(gij+1)(a+%)_%
j=1

WAy, iy Ligyiy 1
= 2(a+1) 9(@+3) (97 +-tgir)
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and therefore the following proposition.
PROPOSITION 3.2. Let 0 < @ <1 and s > 2, then
max;, ... ;, L
2(a+1)

01,0000

~ a4+ .
Hs(Liy. i) C2Es (D) with D:=

The inclusion again is strong. An example of our 5 £%(C)-classes which does
not belong to Ha(L;,,... ;) is the step function (1) in [3, Sect. 2.3].

4 Estimates of the integration error and numerical results

In this section we compare integration error estimates for the different classes
of Sect. 3 if we use (¢,m, s)-nets to calculate the integral approximation (1.1).
THEOREM 4.1. Let P = {xq,...,Xn—1} be a (t,m, s)-net to the base b > 2.
(a) If f € yEX(C) and A := 322 is~ 0379 then
- 1 -
C-A- (142 platals platd)e, (log N)® _1.
(log b)s—1 Nla—3)
(b) If f € S (Aiy,...i,) and q with 1/p+1/q =1, then

Rn(f,P) <

Ry(FP)<(B-1F -0 40F) 4 =Y Y A
N» r=1 1<i;<...<ip<s

REMARK 4.1. Note that our estimates for S{”(A;, .., )-classes are valid for
arbitrary (t,m,s)-nets in base b and they are more precise than those of Sobol’
(see [10, p. 228,239]). Using P;-nets to integrate Hgs(L;, ;. )-classes, Sobol’
[10, p. 239] obtained an estimate of the integration error in the same order of
magnitude as in (a). The estimate in (a) is best possible for , E¢(C)-classes [2].

ProOOF. The proof of Part (a) is given in [3, Part (c), Sect. 4.1]. To prove
Part (b) we apply Holder’s inequality in (3.3). Then, from the estimates of the
Weyl sums given above, we obtain Ry (f, P) <

_ 41
s m—t—1 P
> ¥ S o-nFat b | S g
r=2 1<i1<...<ip<s 9iq oo 94, =0 ki €A(g:,)
m—t—r<gi +...+gi, <m—t -7 7 -
_ o1
s oo P
r m 1 ~
+ Z Z Z (b—1)7 -p=%) . p3(gis o Fgin) Z FANIE
r=1 1<i;<..<ip<s 9iy. 9i,, =0 _ki].eA(gij) ]

For f € Sl()b)(Ailg---;ir) it follows that

S

Rn(f,P) < p—m/p Z(b — l)r/q L plt+r)/p Z Ai i

r=2 1<i1<...<ip<s
8
—m/p r/q ., pt ) )
+ b Y (b-1)""b Aiy.oins
r=1 1<i1<...<ip<s

and this yields the result. O
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As a numerical example we consider the function F' : [0, 1[*— R, with

(4.1) F(zy,...,2s) = (x1+ ... +z5)", n € N.

This function belongs to QE,S% (C)-classes. Using digital (¢, m, s)-nets P from the
Salzburg Tables [6] to calculate the approximation (1.1), we obtained the results
in Figure 4.1 for the integration error Ry (F,P), N = 223, The polynomials
providing the nets and the corresponding quality parameters ¢ are given in [6,
Table 2]. The graphics demonstrates the behavior of the error (logarithmic scale
in base 10) for increasing n and dimensions 3 < s < 15.

> 5 S S
1 I 1 1

a W N

Lo R 4

Log of integration error
w

1N

3 4 5 6 7 8 9 10 11 12 13 14 15

Dimension

Figure 4.1: Integration errors with (¢, m, s)-nets.

5 Further results for , £ (C)-classes

In this section we present two results for bE?(C’)—classes which supplement the
studies given in [3]. From a basic property of digital (¢, m, s)-nets we immediately
obtain the following result (compare also to [7, Thm. 2 (b)]).

PROPOSITION 5.1. For all o > 1/2, C > 0 and all b and s > 2 we have: For
all t and m for which there exists a digital (t,m, s)-net in base b, there is such a
net and a function f € yE*(C) with

Ry(f,P)=(b—-1)- )

PRrOOF. From the proof of [9, Lemma 3c] we get the following property of
digital (¢, m,s)-nets: For all ¢ and m for which there exists a digital (¢, m,s)-
net in base b, there is such a net P; where the first m — t rows of C(!) equal
the first m — t rows of the identity matrix and the remaining rows are zero
vectors. Therefore the first coordinates z\", 0 < n < b™, of P; cover the set
{0,1/6m=t .. (bt — 1) /bt
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Consider the Haar series ZkeNg f(k) - he(x), x€0,1[° where

f(k)::{ b% : keA(g),g=(9,—1,...,-1), g>0

otherwise

o

For this function we get

NIESES Z

9=0keA(g

1 N-1
Z Hy(z1")].
n=0

N|»—-

From [3, Lemma 4.1] we obtain the result. O

In the following we will observe [3, Thm. 3.2] in reverse direction. The result is
an analogue to [7, Lemma 8] where generalized Walsh functions are used instead
of Haar functions. Note that in our case there are no further limitations on the
parameters a > 1/2, due to the local structures of Haar functions.

THEOREM 5.2. If f € pEX(C) with B =0b", L >2, and a > 1/2, then

o s B(a+%) 1 5 1
f€4EX(C-Clab)’) where Clab) =~ - 5 ; S

PRrROOF. Let B = bL, L > 2, for a given base b > 2. The result is proven by
induction in a similar way as [3, Thm. 3.2]. To avoid too many indices, we shall
denote the Haar coefficients of a given function f with respect to the system Hp
by f(n), hence with argument n. Further we will use the argument k to signify
that f(k) denotes the Haar coefficient of f with respect to the Haar system Hy.
We start with dimension s = 1.

For B9 < n < B9t! g € Ny, the Haar function h®’ € Hp has a finite Haar
series with respect to the system 7, more precisely

BItl_1
(5.1) W (z) = > by (k) - he(w).
k=B3

Therefore, if f € pEX(C), a > 1/2, we obtain the following form of f(k),

BItl_1
(5.2) fk) = f(n)-h® (k)  for  BI<k< BIt!
n=B3J

Consider integers n,k with B9 < n < B9t!, g > 0 and k € A(g) with g =
Lg+j, 0<j< L. Further let us define

k(g)

B, = Di(a) = [8), 8] with )= =50 4 oo

0<ac<hb.
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Therefore we have

(5.3) h/(n\T(k):b%bleb(a ky) -1, (n).
a=0
The latter result and (5.2) imply
. , C Bt -1b-1
(54) HCIET L= S S N

From Hellekalek [ Lemma 3.2], we observe that we may have 15, (n) # 0 only
if n(g) € {B- ,8 ) (g), B9 - 3let1) ()}, and in this case it follows that \1/1;(71)\ <
B(=%#=1/sinr 2. Hence we have to analyze for which BY < n < B! and
0 < a < b the equation n(g ) = B9 - 3 (g) holds. Comparing the B-adic
expansions of n(g) and B9 - 3(*)(§) implies that for arbitrary a € {0,...,b}
there are B — 1 such numbers n (n(g) is fixed and ng varies in {1,...,B — 1}).
Using (5.4) we observe that

| B
'B

(5.5) f)| < C-Bamhi .y

1 sm7rB

[

1

(5.6) < C-Clab) - o0,

and this yields the result for dimension s = 1. As an induction hypothesis, we
assume that f € gE2 | (C) implies f € }E¢,(C - C(a,b)*~"). Therefore

Y Ak h(x)= > fs(n) Y (x), xe€[0,1"

keN; ™! neN; ™!

with | f5(k)| < C - C(a,b)* ! - 6(k) and |fp(n)| < C - dp(n). Let f € pE*(C).
This yields |fg(n1,...,ns)| < C-dp(n1)-dp(n), n = (na,...,ns), and therefore

flar, ...z Z ( > fe(n)-hg( )) A (21), x = (22,...,24).

ny= =0 nENS 1

~ v

esES 1 (C-0p(n1))

By induction, we get

oo

fa,..z) =3 | S A& h(x) | b8 (@),

n1=0 \keN:~!
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with | f{"™) (k)| < C - 6p(n1) - C(a,b)* ' - 65(k). On the other hand

fane) = Y h(x) Y A &) S (@)

v

~~

e EX(C - 6y(k) - Cla, b)5™ 1)

Applying the result for dimension s = 1 finishes the proof. O
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