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QUASI-MONTE CARLO METHODS FORNUMERICAL INTEGRATION OF MULTIVARIATEHAAR SERIESKARL ENTACHER �Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34A-5020 Salzburg, Austria. email: Karl.Entacher@sbg.ac.atAbstract.In the present paper we study quasi-Monte Carlo methods to integrate functionsrepresentable by generalized Haar series in high dimensions. Using (t;m; s)-nets tocalculate the quasi-Monte Carlo approximation, we get best possible estimates of theintegration error for practically relevant classes of functions. The local structure of theHaar functions yields interesting new aspects in proofs and results. The results aresupplemented by concrete computer calculations.AMS subject classi�cation: Primary 65D30, 42C10.Key words: Numerical integration, generalized Haar functions, low-discrepancy pointsets, quasi-Monte Carlo methods.1 IntroductionQuasi-Monte Carlo methods are the most e�ective approach for the approx-imate calculation of high dimensional integrals. We refer the reader to thecomprehensive monograph of Niederreiter [12].The basic tools for these methods are special low-discrepancy point sets P =(xn)N�1n=0 ; N 2 N, in the s-dimensional unit cube [0; 1[s, s � 2. The quasi-MonteCarlo approximation of an integral of a function f : [0; 1[s�! R is given byZ[0;1[s f(x) dx � 1N N�1Xn=0 f(xn):Optimal estimates of the integration errorRN (f;P) = �����Z[0;1[s f(x) dx� 1N N�1Xn=0 f(xn)�����(1.1)are obtained for classes of functions representable by special orthogonal seriesand for suitable point sets. Using special classes of rapidly converging Fourier�Research supported by the Austrian Science Foundation (FWF), project no. P9285,P11143-MAT, and by CEI-PACT, WP 5.1.2.1.2 .



2 K. ENTACHERseries called E�s classes, Korobov[4] developed the theory of good lattice points.Recently, in a series of papers, Larcher et al. [6, 7, 8, 9] studied Korobov'sapproach using generalized Walsh series. The appropriate point sets in thisstudy are Niederreiter's (t;m; s)-nets. The latter author has given a detailedtheory on these low-discrepancy point sets and e�cient construction methods(see [12]).Historically, the de�nition of (t;m; s)-nets in base 2 is due to Sobol'[13, 14],who called them P� -nets. It was Sobol's goal to study quasi-Monte Carlo inte-gration in terms of the classical Haar system. He mainly considered classes offunctions which satisfy the H�older condition, called H� classes and special Haarseries with in a certain sense bounded sum of the Haar coe�cients (Sp classes).Considering this background, the following questions naturally arise: If westudy Korobov's approach using (t;m; s)-nets in terms of generalized Haar func-tion systems, how e�cient is this approach in comparison to Sobol's estimatesand the estimates in the Walsh case, and how does the local nature of the Haarfunctions inuence proofs and results?This paper is devoted to an elaborate study of these two questions. Ourapproach yields best possible integration error estimates for (t;m; s)-nets as inthe Walsh case. The integration errors for our ~E� classes show the same orderof magnitude as Sobol' derived for his H� classes, which are subclasses of ourclasses. Analogous results to those of Larcher [7, 9] can be proven in an entirelydi�erent and sometimes easier way (compare our Theorem 3.2 and Theorem 3in [7]) due to the local de�nition of the Haar functions. Contrary to the Walshcase it can be shown that practically relevant classes of functions satisfy theconditions required for the error estimates.The results of this paper, which are part of the author's PhD thesis[1] areobtained by multiresolution properties of the Haar functions only. We conjec-ture that our concept may be extended to other orthogonal wavelet systems oncompact intervals.2 De�nitions2.1 The generalized Haar function systemIn this section we present the de�nition of the Haar function system relativeto an arbitrary integer base b � 2. The notations and the de�nitions are takenfrom Hellekalek [3].In the following, we shall identify the s-dimensional torus (R=Z)s; s � 1,with the half-open unitcube [0; 1[s. The normalized Haar measure on (R=Z)s,respectively the Lebesgue measure on [0; 1[s, will be denoted by �s.Let b � 2 be a �xed integer. For a nonnegative integer k, let k =P1j=0 kjbj ,kj 2 f0; 1; : : : ; b�1g, be the unique b-adic expansion of k in base b. Every numberx 2 [0; 1[ has a unique b-adic expansion x =P1j=0 xjb�j�1, xj 2 f0; 1; : : : ; b�1g,under the condition that xj 6= b� 1 for in�nitely many j. In the following, thisuniqueness condition is assumed without further notice.For g 2 N, we de�ne k(g) :=Pg�1j=0 kjbj and x(g) :=Pg�1j=0 xjb�j�1. Further



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 3let k(0) := 0 and x(0) := 0: Note that k(g) 2 f0; 1; : : : ; bg � 1g and x(g) 2f0; 1=bg; : : : ; (bg � 1)=bgg.Definition 2.1. (1) Let g be a nonnegative integer. We de�ne �b(g) := fk 2N : bg � k < bg+1g. Further, let �b(�1) := f0g and the sets N0 := N [ f0g,and N1 = N0 [ f�1g:(2) If g = (g1; : : : ; gs) 2 Ns1, for an integer s � 2, then �b(g) :=Qsi=1�b(gi).Remark 2.1. Throughout this paper, we will use the sets �b(g). The readershould note that, if k 2 �b(g); g � 0, then k = k0+k1b+: : :+kgbg = k(g)+kgbg ,with kg 2 f1; : : : ; b� 1g. If g � 0, then ]�b(g) = (b� 1) � bg , where ]M denotesthe number of elements of a given set M .Definition 2.2. Let eb : Zb ! K, where Zb = f0; 1; : : : ; b � 1g is the leastresidue system modulo b and K := fz 2 C : jzj = 1g, denote the functioneb(a) := e2�i ab ; a 2 Zb:The k-th Haar function h(b)k ; k � 0, to the base b is de�ned as follows:If k = 0, then h(b)0 (x) := 1 8x 2 [0; 1[. If k 2 �b(g); g � 0, thenh(b)k (x) := b g2 � b�1Xa=0 eb(a � kg) � 1D(b)k (a)(x);with the elementary b-adic intervalsD(b)k (a) := �k(g)bg + abg+1 ; k(g)bg + a+ 1bg+1 � :The k-th normalized Haar function H(b)k on [0; 1[ is de�ned as H(b)0 := h(b)0 ; and,if k 2 �b(g); g � 0, then H(b)k := b� g2 � h(b)k :Definition 2.3. The fundamental domain D(b)k of the k-th Haar functionh(b)k is de�ned as the following elementary b-adic interval: If k = 0, then D(b)0 :=[0; 1[; if k 2 �b(g); g � 0, thenD(b)k := b�1[a=0D(b)k (a) = �k(g)bg ; k(g) + 1bg � :Remark 2.2. The notation \fundamental domain" is not common usage. Wewrite hk, Hk, �(g) and Dk if it is clear from the context which base b is meantor if we present properties of h(b)k and H(b)k which are valid for all bases b � 2.This notation will be used in the multidimensional case de�ned below.Definition 2.4. Let Hb := fh(b)k : k := (k1; k2; : : : ; ks) 2 Ns0g denote theHaar function system to the base b on the s-dimensional torus [0; 1[s; s � 1. Thek-th Haar function h(b)k is de�ned as h(b)k (x) :=Qsi=1 h(b)ki (xi); x = (x1; : : : ; xs) 2[0; 1[s: The normalized version H(b)k is de�ned in the same way and the k-th s-dimensional fundamental domain denotes D(b)k :=Qsi=1D(b)ki :



4 K. ENTACHERRemark 2.3. The main properties of the Haar functions are given in [3,Remark 2.1, 2.2]. The generalization of property (4) in Remark 2.1 of thelatter paper is the following: there are exactly (b � 1)r Haar functions h(b)k ,k 2 �b(g); g = (g1; : : : ; gs) 2 Ns1, where s � r is the number of indices i suchthat gi = �1, that have the same fundamental domain. In this case we getH(b)k = b�� � h(b)k ; with � = 12 sXi=1gi 6=�1 gi:2.2 The function class b ~E�s (C)We de�ne our function classes b ~E�s (C) slightly di�erent from Larcher. Sincethe supports of the Haar functions hk; k 2 �(g); g � 0; are elementary b-adicintervals of length b�g, we de�ne the classes with respect to the resolution b�g .For f 2 L1([0; 1[s; �s), let Sf denote the Haar series of f ,Sf (x) := Xk2Ns0 f̂(k) � hk(x); x 2 [0; 1[s; with f̂(k) := Z[0;1[s f � hk d�s:Definition 2.5. For a given integer base b � 2 and for � > 0 and C > 0,let b ~E�s (C) be the class of all functions f 2 L1([0; 1[s; �s) with f � Sf on [0; 1[swhere the Haar coe�cients f̂ have the following propertyjf̂(k)j � Crb(k)� ; 8 k 2 �(g); and g = (g1; : : : ; gs) 2 Ns1;(2.1)with rb(k) := sYi=1 rb(ki) and rb(ki) := � 1 : ki = 0bgi : ki 2 �(gi); gi � 0:Remark 2.4. If f 2 b ~E�s (C) and � > 1=2, then the Haar series Sf is ab-solutely convergent (see [1]). Example 1 below indicates a Haar series which isdivergent for all x 2 [0; 1[s if � = 1=2.2.3 Examples of functions and their classesIn this section, we present some examples of functions for di�erent classes2 ~E�s (C). The proofs that the functions belong to these classes are given inEntacher[1]1.1This paper is also available in the internet on the World-Wide-Web server:http://random.mat.sbg.ac.at (also accessible via ftp).



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 5(1) Our test function to calculate the integration error in high dimensions isthe function F : [0; 1[s�! R withF (x) := sYi=1 f(xi); x = (x1; : : : ; xs) 2 [0; 1[s; and(2.2)f(x) := 2(�+ 12 ) � 12�(2(�� 12 ) � 1) � 12g(�� 12 ) for x 2 �1� 12g ; 1� 12g+1 � ; g � 0:F belongs to the class 2 ~E�s (C) with � > 1=2 and C := maxf1; (2� �p2)�sg.(2) Consider the class H�(L), 0 < � � 1 of functions f : [0; 1[�! R, where8x; y 2 [0; 1[ : jf(x) � f(y)j � Ljx � yj�. These function classes and theirgeneralization to dimension s � 2 have been studied by Sobol' [14]. It is easy toshow that H�(L) � 2 ~E�+ 121 (L=2).(3) Examples of the classes 2 ~E 32s (C).From (2) we obtain that the function f : [0; 1[�! R, f(x) := xn, n 2 N,belongs to the class 2 ~E 321 (n2 ). Therefore 2 ~E 321 (ja0j+ 12Pni=1 i � jaij) is the class ofthe polynomialf(x) = a0 + a1x+ : : :+ anxn; n 2 N0; ai 2 R;and 2 ~E 32s ( 12Psi=1 i � jaij) is the class of the functionF (x1; : : : ; xs) := a1x1 + a2x22 + : : :+ asxss; (x1; : : : ; xs) 2 [0; 1[s:Consider F : [0; 1[s�! R withF (x1; : : : ; xs) := (x1 + : : :+ xs)n; n 2 N:(2.3)This function belongs to the class 2 ~E 32s (C) withC = nXn1;:::;ns=0n1+:::+ns=n n!2(s�]fni=0g) �Qsi=1(ni � 1)! where (�1)! := 1:2.4 (t;m; s)-netsIn analogy to Larcher's method of numerical integration of Walsh series, weget optimal integration errors by using (t;m; s)-nets. For e�cient constructionmethods of (t;m; s)-nets we refer to [5, 10, 11, 12]. The results of the integrationerror will be compared to the estimates derived by using the uniform lattice.Special construction methods of (t;m; s)-nets, the so called digital nets, playan outstanding role in the Walsh case. First results concerning the use of digitalnets in our framework are given in [1, 2].The de�nition of (t;m; s)-nets and the basic properties are given in [12, p. 48].Definition 2.6.Let n 2 N. The uniform lattice is de�ned as the following point set P consist-ing of N = ns points P := f(k1n ; : : : ; ksn ) : 0 � ki � n� 1; 1 � i � sg:



6 K. ENTACHER3 The results3.1 Estimates of the integration errorTheorem 3.1. For b � 2, let f 2 b ~E�s (C) with � > 12 . Further let P =fx0; : : : ;xN�1g be a point set in [0; 1[s and RN (f;P) the integration error (1.1).(a) If P is the uniform lattice with N = bns; n � 1; thenRN (f;P) � C �A � b(�� 12 )bs � 1N ;  = �� 12s ; A := 1Xi=1 is�1b( 12��)i:(b) The result in (a) is, apart of the constant C, best possible since there existsa function f 2 b ~E�s (1), withRN (f;P) = (b� 1)b(�� 12 )b(�� 12 ) � 1 � 1N ;  = ��1=2s :(c) If P is a (t;m; s)-net to the base b, thenRN (f;P) � C � A � (1 + 2s�1)b(�+ 12 )s(log b)s�1 � b(�+ 12 )�t � (log N)s�1N (�� 12 ) :(d) The result in (c) is, apart of the constant, best possible, since for every � > 12and C > 0 there exists a (0;m; 2)-net P to the base 2 and a function f 2 2 ~E�2 (C)with RN (f;P) � C � 2(�� 12 ) � log NN (�� 12 ) :Remark 3.1. An analogue to Theorem 3.1 for the Walsh case is given inLarcher and Traunfellner [9, Theorem 1 and Theorem 2]. Recent improvementsof these results can be found in [8, Theorem 1 and Theorem 2]. The (0;m; 2)-net in part (d) is an example of a digital (t;m; 2)-net. Despite the fact thatthe error estimates above suggest to use (0;m; s)-nets to calculate the quasi-Monte Carlo approximation of a function, we can give examples of 2-dimensionalfunctions belonging to our classes where, for example, the integration error usinga (1;m; 2)-net to calculate the quasi-Monte Carlo approximation is smaller thanthe error obtained by a (0;m; 2)-net (see [1, 2]).Using (t;m; s)-nets to base 2 (originally called P� -nets), Sobol' derived anintegration error estimate for his H� classes (compare Sect. 2.3 (2)) of the sameorder of magnitude as we obtained for our classes, see [14, p. 239]. Sobol's moregeneral Sp classes exhibit higher error bounds.Theorem 3.1 yields the best integration error estimate by using (0;m; s)-nets.But form � 2, a (0;m; s)-net in base b can only exist for dimensions s � b+1 (see[12, Corollary 4. 21]). For applications on binary computers, e�cient calculationsare done with base 2, and for this reason, (0;m; s)-nets can only exist up todimension s = 3.We bridge this gap by the following theorem which shows that a function f 2b ~E�s (C); � > 1=2, belongs to a class bL ~E�s (D); L � 2. This guarantees a



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 7calculation of the quasi-Monte Carlo approximation with (0;m; s)-nets to thebase bL in higher dimensions.Theorem 3.2. Let f 2 b ~E�s (C) with � > 12 . Then we havef 2 B ~E�s (C � �C(�; b)s) where �C(�; b) = C(b) �B � b(�+ 12 )b(�+ 12 ) � 1with B = bL; L � 2; and C(b) = 1b b�1Xa=1 1sin � ab :Remark 3.2. The analogue to Theorem 3.2 for the Walsh case (see Larcheret al. [7, Theorem 3]) is proven for the case b = 2. In comparison to our result,Larcher's theorem is only valid for � > 1 + �L, 0:25 � �L < 0:5, and theappropriate constant D contains B�, whereas our constant D contains only B.3.2 Numerical resultsHere, we present some numerical results of the integration error (1.1) for thetest function 2.2 described in Section 2.3 . Numerical results for function (2.3)are given in [2]. Further numerical comparisons for special Walsh series andthe function f(x1; : : : ; xs) := (x1 + : : :+xs)1=2, using (t;m; s)-nets, good latticepoints and Halton sequences are given in [6].We normalized f , hence we get R[0;1[s F (x) dx = 1 in all dimensions. Using� = k+ 12 ; k 2 N, we can calculate the quasi-Monte Carlo approximation for thisfunction in integer arithmetic except of a �nal division. Thus, round o� errorsare avoided. The (0;m; s)-nets, 2 � s � 9, are generated by the constructionmethod published in [10].� = 3=2 b = 4 � = 7=2 b = 4N n s 2 3 4 5 2 3 4 545 2.4e-05 3.6e-05 2.1e-04 1.2e-03 9.0e-10 7.9e-08 8.9e-06 1.9e-0346 1.8e-06 6.1e-06 2.8e-05 2.9e-04 4.2e-12 4.7e-10 3.6e-08 2.3e-0547 1.3e-07 2.3e-06 2.5e-06 5.1e-05 1.9e-14 1.3e-11 2.9e-11 2.1e-0748 9.5e-09 8.4e-08 9.3e-08 1.1e-06 0.0 2.4e-14 6.0e-13 2.4e-1049 6.7e-10 6.0e-10 1.1e-08 4.1e-07 0.0 0.0 4.2e-15 4.7e-12� = 3=2 b = 8 � = 7=2 b = 8N n s 6 7 8 9 6 7 8 985 2.3e-05 2.0e-04 1.1e-03 6.8e-03 4.0e-08 1.5e-05 1.7e-04 3.4e-0186 6.1e-07 5.9e-06 1.1e-05 3.9e-03 2.1e-10 1.4e-08 5.9e-06 3.4e-0187 6.1e-08 4.1e-07 1.1e-05 3.9e-03 5.6e-13 3.3e-12 7.8e-08 3.4e-0188 1.4e-09 1.7e-08 7.0e-08 1.9e-03 2.2e-16 7.2e-13 7.2e-12 3.0e-0189 3.6e-12 1.3e-10 1.2e-09 3.1e-05 0.0 0.0 3.3e-14 7.3e-05The following table presents some results using the uniform lattice in dimen-sions 3 � s � 8.



8 K. ENTACHER� = 3=2 b = 4 � = 7=2 b = 43 4 5 3 4 5N RN N RN N RN N RN N RN N RN49 3.7e-04 48 7.8e-03 410 9.8e-03 49 1.6e-07 48 5.6e-05 410 7.0e-05� = 3=2 b = 8 � = 7=2 b = 86 7 8 6 7 886 4.8e-02 87 5.6e-02 88 6.4e-02 86 1.4e-03 87 1.6e-03 88 1.8e-034 The proofsLet f 2 b ~E�s (C), � > 1=2, and P = fx0; : : : ;xN�1g be a point set in [0; 1[s.Since f = Sf on [0; 1[s, we easily getRN (f;P) = ������Xk6=0 f̂(k) � SN (hk;P)������with SN (hk;P) := 1N N�1Xn=0 hk(xn); k 2 Ns0:From De�nition 2.5, it followsRN (f;P) � CXk6=0 1rb(k)� jSN (hk;P)j:(4.1)In the following, we estimate the \Weyl sums" SN (hk;P) for the di�erent pointsets.4.1 Proof of Theorem 3.1For a given g = (g1; : : : ; gs) 2 Ns1, let r; 1 � r � s denote the number of i withgi � 0, and let the remaining gi = �1 (i.e. ki = 0). For the calculations below,the order in (g1; : : : ; gs) does not matter. We only have to note that there are�sr� possibilities to arrange the s� r numbers �1 in g = (g1; : : : ; gs). Thereforelet, w. l. o. g., g 2 Ns1 withgi � 0 for 1 � i � r and gi = �1 for r + 1 � i � s:(4.2)Part (a) Let P be the uniform lattice with N = bns points.Lemma 4.1.(1) SN (hk;P) = 0 for all k 2 �(g) and g with at least one gj < n for 1 � j � r.(2) For all g with gj � n; 1 � j � r, we haveSN (Hk;P) = 8<: b�rn for (b� 1)rbrn vectors k 2 �(g)0 otherwise:



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 9Proof. (1) W. l. o. g., we consider the case0 � g1; : : : ; gl < n and gl+1; : : : ; gr � n; 1 � l � r:The fundamental domain Dk of hk; k 2 �(g) has the formDk = rYi=1 �ki(gi)bgi ; ki(gi) + 1bgi �� [0; 1[s�r=: sYi=1 Ii:(4.3)Two cases are possible:Case I: Dk \ P = ;, then SN (hk;P) = 0.Case II: ](Dk \ P) = b(s�r)n lYi=1 bn�gi ;In the second case, each of the intervals Ii; 1 � i � l, has bn�gi possibilitiesfor the i-th coordinate, and the intervals Ii; l + 1 � i � r, contain exactly onecoordinate xi of a lattice point x 2 P . Further, Hki(xi) = 1 as the coordinatexi necessarily belongs to Dki(0). Finally, each of the Ii; r + 1 � i � s, has bnpossibilities for the i-th coordinate x(j)i ; 0 � j � bn � 1, where H0(x(j)i ) = 1.The intervals I1; : : : ; Il are partitioned into b elementary b-adic subintervalsDki(ai) = �b � ki(gi) + aibgi+1 ; b � ki(gi) + ai + 1bgi+1 � ; 0 � ai � b� 1; 1 � i � l:Each of these subintervals contains bn�gi�1 � 1 coordinates. Hence we getSN (Hk;P) = 1N b(s�r)n lYj=1 bn�gj�1 lYi=1 b�1Xai=0 eb(ai � (ki)gi)| {z }=0 :(2) Similar to part (1), if Dk\P = ;, then SN (hk;P) = 0. Otherwise, we have,](Dk \ P) = bn(s�r). Since, from �(Ii) � b�n; 1 � i � r, it follows that the�rst r coordinates ( �l1bn ; : : : ; �lrbn ) of a point p 2 Dk \ P are �xed. The remainingcoordinates vary in f0; 1=bn; : : : ; (bn � 1)=bng. ThereforeSN (Hk;P) = 1NHk1( �l1bn ) � � �Hkr ( �lrbn ) bn�1Xlr+1;:::;ls=0H0( lr+1bn ) � � �H0( lsbn )= 1bnr rYi=1Hki( �libn ):For any number x = �li=bn, we obtain that the digit xgi = 0, because of gi �n; 1 � i � r. From this, it follows that Hki(x) = eb(xgi � (ki)gi) = 1.There are bnr possible Dk with ](Dk \ P) = bn(s�r). For a given Dk, thereare (b � 1)r di�erent k 2 �(g) to get this particular fundamental domain. We



10 K. ENTACHERonly have to vary the digit (ki)gi 2 f1; : : : ; b � 1g for 1 � i � r. Thus weget SN (Hk;P) = b�nr for (b � 1)rbnr points k 2 �(g), and SN (Hk;P) = 0otherwise.We continue with Part (a) of the proof of Theorem 3.1 . For a given g 2 Ns1with property (4.2), letSg := Xk2�(g) 1rb(k)� � jSN(hk;P)j:Using Lemma 4.1, we only have to consider g with g1; : : : ; gr � n. In this casewe obtain Sg � (b� 1)rb( 12��)(g1+:::+gr):By partitioning the sum on the right side of (4.1) into areas �(g), we getRN (f;P) � C sXr=1 �sr�(b� 1)r 1Xi=rn 1Xg1;:::;gr=ng1+:::+gr=i b( 12��)i:There are �i�rn+r�1r�1 � � (i � rn + 1)r�1 solutions of g1 + : : : + gr = i withgj � n; 1 � j � r (see [1, Sect. 1.1]). This yieldsRN (f;P) � C sXr=1 �sr�(b� 1)rb( 12��)(rn�1) 1Xi=1 is�1b( 12��)i| {z }=:A� C � A � b(�� 12 )bs �N���1=2s :Part (b) We consider the function f : [0; 1[s�! R,f(x) := Xk2Ns0 f̂(k) � hk(x);with f̂(k1; 0; : : : ; 0) = b�g� for k1 2 �(g), g � 0, and f̂(k) = 0 otherwise. Thisde�nition yields f 2 b ~E�s (1), and with g := (g1;�1; : : : ;�1), g1 � 0,RN (f;P) = ������ 1Xg1=0 Xk2�(g) 1bg1�SN(hk;P)������ :Using SN (hk;P) = b g12 SN (Hk;P) and Lemma 4.1 for r = 1, we getRN (f;P) = 1Xg1=n b� 1bg1(�� 12 ) = (b� 1)b(�� 12 )b(�� 12 ) � 1 � 1N ��1=2s :Part (c) Let P be a (t;m; s)-net in base b and g 2 Ns1 with property (4.2).



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 11Lemma 4.2.(1) SN (hk;P) = 0 for all k 2 �(g) and g with Psi=1(gi + 1) � m� t.(2) jSN (Hk;P)j � b�(g1+:::+gr) for all k 2 �(g), and g withm� t < sXi=1(gi + 1) < m� t+ r:Note that this case is only possible for 2 � r � s.(3) If Psi=1(gi + 1) � m � t + r, then there are at most (b � 1)rbm vectorsk 2 �(g) with jSN (Hk;P)j 6= 0. In this case we have jSN (Hk;P)j � bt�m.Proof. (1) The fundamental domain Dk of hk; k 2 �(g), is partitioned intobr elementary b-adic subintervals of the formI = rYi=1Dki(ai)� [0; 1[s�r;where the ai vary in f0; : : : ; b � 1g. The function hk is obviously constant oneach interval I . The requirement Psi=1(gi + 1) � m� t yields �s(I) � bt�mso that each I contains exactly �s(I) � bm points of P . Hence, we haveSN(hk;P) = 1b(g1+:::+gr)+r b�1Xa1=0 � � � b�1Xar=1 rYi=1 b gi2 eb(ai � kgi ) = 0:(2) The inequalitym�t�r < g1+: : :+gr < m�t yields bt�m < �(Dk) < br+t�m.Therefore ](Dk \ P) = bm�(Dk) and thus we get jSN (Hk;P)j � �(Dk) =b�(g1+:::+gr).(3) In this case we have �(Dk) � bt�m. Hence, Dk contains at most bt elementsof P . The result follows easily from Remark 2.3.We continue with the proof of Part (c) of Theorem 3.1 . Again, we considerSg := Xk2�(g) 1rb(k)� � jSN(hk;P)j:For the case (2) of the lemma above, we get Sg � (b� 1)r � b( 12��)(g1+:::+gr), andfor the case (3) Sg � (b � 1)r � bt � b( 12��)(g1+:::+gr). This and part (1) of thelemma above yieldRN (f;P) � C sXr=2 �sr�(b� 1)r m�t�1Xg1;:::;gr=0m�t�r<g1+:::+gr<m�t b( 12��)(g1+:::+gr)+ C � bt sXr=1 �sr�(b� 1)r 1Xg1;:::;gr=0g1+:::+gr�m�t b( 12��)(g1+:::+gr):



12 K. ENTACHERThe number of solutions of the equation g1 + : : : + gr = i; gi 2 N0, equals�i+r�1r�1 � � (i+ 1)r�1. This yieldsRN (f;P) � C sXr=2 �sr�(b� 1)r r�1Xi=1 (m� t� r + 1 + i)s�1b( 12��)(m�t�r+i)+ Cbt sXr=1 �sr�(b� 1)r 1Xi=r (m� t� r + 1 + i)s�1b( 12��)(m�t�r+i):For all i 2 Nwe havem�t�r+1+i � m�i for r � 2, andm�t�r+1+i � (m+1)�ifor r � 1. HenceRN (f;P) � C � ms�1b(�� 12 )(t+s)b(�� 12 )m sXr=2 �sr�(b� 1)r 1Xi=1 is�1b( 12��)i+ C � ms�12s�1btb(�� 12 )(t+s)b(�� 12 )m sXr=1 �sr�(b� 1)r 1Xi=1 is�1b( 12��)i:Again let A :=P1i=1 is�1b( 12��)i, then we get the resultRN (f;P) � C �A � (1 + 2s�1)b(�+ 12 )(t+s)(log b)s�1 � (logN)s�1N�� 12 :Part (d) is proven in Entacher[2].Proof of Theorem 3.2Let B = bL, L � 2, for a given base b � 2. We shall prove the result byinduction for dimension s.Case I: dimension s = 1We start with the examination of the Haar series S(B)hk ; hk 2 Hb, with respectto the system HB . To avoid too many indices, we shall denote the Haar coe�-cients of a given function f with respect to the system HB by f̂(n), hence withargument n. Further we will use the argument k to signify that f̂(k) denotes theHaar coe�cient of f with respect to the Haar system Hb. In the next lemma,we shall prove that the k-th Haar function hk 2 Hb is a Haar polynomial withrespect to the system HB .Lemma 4.3. Let k 2 �B(j), j � 0. Then the n-th Haar coe�cient chk(n) withrespect to the system HB of the k-th Haar function hk 2 Hb is equal to zero forall n with n < Bj or n � Bj+1. If k = 0, then chk(n) = 0 for all n � 1.Proof. We have chk(n) = ZDk\D(B)n hk(x)h(B)n (x) dx:The case k = 0 is easily veri�ed. Let j � 0 and n � Bj+1. Then we have eitherDk \ D(B)n = ; or D(B)n � Dk. In the second case, the Haar function hk, is



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 13constant on Dk \D(B)n = D(B)n and therefore chk(n) = 0. The inequality n < Bjis treated similarly.Corollary 4.4. Let Bj � k < Bj+1, j 2 N0. The Haar function hk 2 Hbhas a �nite Haar series with respect to the system HB , andhk(x) = Xn2�B(j)chk(n)h(B)n (x):Let f 2 b ~E�1 (C). Our goal is to estimate the Haar coe�cients f̂(n); n 2 N.The following lemma shows a representation of the numbers f̂(n) in terms of theHaar coe�cients f̂(k) with regard to Hb and the Haar coe�cients chk(n) withrespect to the function system HB .Lemma 4.5. If f 2 b ~E�1 (C), � > 1=2, thenf̂(n) = L(�g+1)�1Xg=L�g Xk2�(g) f̂(k)chk(n) for n 2 �B(�g); �g � 0:This lemma will yield the order of f̂(n) if we are able to estimate chk(n).Proof. We haveSf (x) = f̂(0) + 1X�g=0 (�g+1)L�1Xg=�gL Xk2�(g) f̂(k)hk(x):Since k 2 �(g) with �gL � g < (�g+1)L if and only if B�g � k < B�g+1, Corollary4.4 yieldsSf (x) = f̂(0) + 1X�g=0 (�g+1)L�1Xg=�gL Xk2�(g) f̂(k) Xn2�B(�g)chk(n)h(B)n (x)= f̂(0) + 1X�g=0 Xn2�B(�g)0@(�g+1)L�1Xg=�gL Xk2�(g) f̂(k)chk(n)1Ah(B)n (x):This yields the result.Let us consider the integers k; n, with B�g � k; n < B�g+1; �g � 0, since fromLemma 4.3 it follows that only in these cases chk(n) 6= 0 is possible.In the following, let n 2 �B(�g); �g � 0, and k 2 �(g) with L�g � g < L(�g + 1),more preciselyn 2 �B(�g) and k 2 �(g) with g = L�g + j; 0 � j < L:(4.4)Further let us de�neEa := D(B)n (a) = [�(a); �(a+1)[ with �(a) := n(�g)B�g + aB�g+1 ; 0 � a < B:



14 K. ENTACHERSince h(B)n (x) = B �g2 B�1Xa=0 eB(a � n�g) � 1Ea(x);we get chk(n) = B �g2 B�1Xa=0 eB(a � n�g) �d1Ea(k):(4.5)From Hellekalek [3, Lemma 3.2], we conclude that we may have d1Ea(k) 6= 0 onlyif k(g) 2 fbg � �(a)(g); bg � �(a+1)(g)g, and in this case the given estimation ofjd1Ea(k)j does not depend on the explicit value of k(g). Therefore we have toexamine the setA(k; g) := fa 2 f0; : : : ; B � 1g : k(g) = bg � �(a)(g)g:The case k(g) = bg�(B)(g) will be treated below.Let n(�g) = �n0+�n1B+: : :+�n�g�1B�g�1 be the B-adic expansion of n(�g). Changingto base b yields n(�g) = n0 + n1b + : : : + nL�g�1bL�g�1, ni 2 f0; : : : ; b � 1g, andfrom this we get for a = a0 + a1b+ : : :+ aL�1bL�1,n(�g) �B + a = a0 + a1b+ : : :+ aL�1bL�1 + n0bL + : : :+ nL�g�1bL(�g+1)�1:Because of g = L�g + j, j 2 f0; : : : ; L� 1g, it follows�(a)(g) = ( 0:nL�g�1nL�g�2 : : : n0aL�1 : : : aL�j if j � 10:nL�g�1 : : : n0 if j = 0;and �(a)g = aL�j�1. Thus we havebg � �(a)(g) = aL�j + aL�j+1b+ : : :+ aL�1bj�1 + n0bj + : : :+ nL�g�1bg�1:The requirement k(g) = bg � �(a)(g) is equivalent to k0 = aL�j ; : : : ; kj�1 =aL�1; kj = n0; : : : ; kg�1 = nL�g�1. Hence, the numbers a have the forma = a0 + a1b+ : : :+ aL�j�1bL�j�1 + k0bL�j + : : :+ kj�1bL�1:If we vary a0; : : : ; aL�j�1, we getA(g; k) = fbL�j � k(j) + i : i 2 f0; : : : ; bL�j � 1gg and ]A(g; k) = bL�j :Note that if a = bL�j � k(j), then a0 = 0; : : : ; aL�j�1 = 0, and therefore�(a)g = 0 and �(a) � �(a)(g + 1) = 0:(4.6)



NUMERICAL INTEGRATION OF MULTIVARIATE HAAR SERIES 15Finally, we have to consider the case �(B) = (n(�g) + 1)=B�g, since the casek(g) = bg�(B)(g) is not included above. Here we distinguish between �(B) = 1and �(B) < 1. Let a := B � 1. The �rst case yields d1Ea(k) = �c1J(k); J :=[0; �(a)[, and therefore we have d1Ea(k) 6= 0 only if a 2 A(g; k) due to the aboveproof. If �(B) < 1, one can easily show that �(B)g = 0 and �(B)��(B)(g+1) = 0.From Lemma 3.1 in [3], we observe that d1Ea(k) = �c1J ; J := [0; �(a)[, and weare in the same situation as before.Let us return to the examination of chk(n) in (4.5).Lemma 4.6.If n 2 �B(�g); �g � 0, and k 2 �(g) with g = L�g + j, 0 � j < L, then there areexactly (b� 1) � bj integers1 k 2 �(g) with jchk(n)j 6= 0. In this case we havejchk(n)j � B �g2 � bL�j � b� g2�1 1sin� kgb :Proof. The considerations above yieldA(g; k) = fbL�jk(j) + i : i 2 f0; : : : ; bL�j � 1gg:Let k(j) 6= 0. We consider a = bL�j � k(j) � 1. Then a 62 A(g; k), but a + 1 =bL�j � k(j) 2 A(g; k). In this case, (4.6) implies that �(a+1)g = 0 and �(a+1) ��(a+1)(g+1) = 0. Hence Lemma 3.1, Part 2 of Hellekalek [3] implies d1Ea(k) = 0.If k(j) = 0, the situation above is not possible, since A(g; k) = f0; : : : ; bL�j�1g.Hence for both cases, k(j) 6= 0 and k(j) = 0, we obtain, by equation (4.5),chk(n) = B �g2 � bL�j�1Xi=0 eB(ai � n�g) � d1Eai (k) with ai := bL�jk(j) + i:The result follows from Lemma 3.2 in [3] and from the fact that there are bjdi�erent possibilities for k(j) and b� 1 possibilities for kg .Now we are able to estimate f̂(n). Lemma 4.5 yieldsjf̂(n)j � C L(�g+1)�1Xg=L�g Xk2�(g) 1bg� � jchk(n)j:Using j = g � L�g and the lemma above, we getXk2�(g) 1bg� � jchk(n)j � 1bg(�+ 12 ) � B( �g2+1) � 1b b�1Xa=1 1sin� ab| {z }=: C(b) :1These are exactly the numbers k with kg 2 f1; : : : ; b � 1g, and k(g) varies arbitrarily inf0; 1; : : : ; bj � 1g.
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