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Abstract.

In the present paper we study quasi-Monte Carlo methods to integrate functions
representable by generalized Haar series in high dimensions. Using (t,m, s)-nets to
calculate the quasi-Monte Carlo approximation, we get best possible estimates of the
integration error for practically relevant classes of functions. The local structure of the
Haar functions yields interesting new aspects in proofs and results. The results are
supplemented by concrete computer calculations.
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1 Introduction

Quasi-Monte Carlo methods are the most effective approach for the approx-
imate calculation of high dimensional integrals. We refer the reader to the
comprehensive monograph of Niederreiter [12].

The basic tools for these methods are special low-discrepancy point sets P =
(xn)g;[}, N € N, in the s-dimensional unit cube [0, 1[*, s > 2. The quasi-Monte
Carlo approximation of an integral of a function f : [0,1[*— R is given by

1N*l
X)dx ~ — Xn).
[RICEET DI

Optimal estimates of the integration error

N-1

1
Awﬂﬂﬂ—NZﬂm)

n=0

(1.1) Rn(f,P) =

are obtained for classes of functions representable by special orthogonal series
and for suitable point sets. Using special classes of rapidly converging Fourier
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series called E¢ classes, Korobov[4] developed the theory of good lattice points.
Recently, in a series of papers, Larcher et al. [6, 7, 8, 9] studied Korobov’s
approach using generalized Walsh series. The appropriate point sets in this
study are Niederreiter’s (t,m, s)-nets. The latter author has given a detailed
theory on these low-discrepancy point sets and efficient construction methods
(see [12]).

Historically, the definition of (¢,m, s)-nets in base 2 is due to Sobol’[13, 14],
who called them P.-nets. It was Sobol’s goal to study quasi-Monte Carlo inte-
gration in terms of the classical Haar system. He mainly considered classes of
functions which satisfy the Holder condition, called H, classes and special Haar
series with in a certain sense bounded sum of the Haar coefficients (S, classes).

Considering this background, the following questions naturally arise: If we
study Korobov’s approach using (¢, m, s)-nets in terms of generalized Haar func-
tion systems, how efficient is this approach in comparison to Sobol’s estimates
and the estimates in the Walsh case, and how does the local nature of the Haar
functions influence proofs and results?

This paper is devoted to an elaborate study of these two questions. Our
approach yields best possible integration error estimates for (¢,m, s)-nets as in
the Walsh case. The integration errors for our E® classes show the same order
of magnitude as Sobol’ derived for his H, classes, which are subclasses of our
classes. Analogous results to those of Larcher [7, 9] can be proven in an entirely
different and sometimes easier way (compare our Theorem 3.2 and Theorem 3
in [7]) due to the local definition of the Haar functions. Contrary to the Walsh
case it can be shown that practically relevant classes of functions satisfy the
conditions required for the error estimates.

The results of this paper, which are part of the author’s PhD thesis[1] are
obtained by multiresolution properties of the Haar functions only. We conjec-
ture that our concept may be extended to other orthogonal wavelet systems on
compact intervals.

2 Definitions
2.1 The generalized Haar function system

In this section we present the definition of the Haar function system relative
to an arbitrary integer base b > 2. The notations and the definitions are taken
from Hellekalek [3].

In the following, we shall identify the s-dimensional torus (R/Z)*, s > 1,
with the half-open unitcube [0,1[*. The normalized Haar measure on (R/Z)?,
respectively the Lebesgue measure on [0, 1], will be denoted by As.

Let b > 2 be a fixed integer. For a nonnegative integer k, let k = 72 k;b7,
k; € {0,1,...,b—1}, be the unique b-adic expansion of k in base b. Every number
x € [0, 1] has a unique b-adic expansion z = Z;’io z;b97 1 2, €{0,1,...,b—1},
under the condition that z; # b — 1 for infinitely many j. In the following, this
uniqueness condition is assumed without further notice.

For g € N, we define k(g) := Z?;& k;b’ and z(g) = Z?;& z;b77~1. Further
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let £(0) := 0 and z(0) := 0. Note that k(g) € {0,1,...,b? — 1} and z(g) €
{0,1/b9,...,(b9 = 1)/b9}.

DEFINITION 2.1. (1) Let g be a nonnegative integer. We define Ap(g) == {k €
N : b9 <k < b9}, Further, let Ay(—1) := {0} and the sets Ng := N U {0},
and Ny = No U {-1}.

(2) If g = (91,---,9s) € Ni, for an integer s > 2, then Ay(g) := [1;_; Av(g:).

REMARK 2.1. Throughout this paper, we will use the sets Ay(g). The reader
should note that, if k € Ay(g), g > 0, then k = ko+k1b+.. . +k,09 = k(g)+ky07,
with k; € {1,...,b—1}. If g > 0, then §Ay(g) = (b — 1) - b9, where §M denotes
the number of elements of a given set M.

DEFINITION 2.2. Let ey : Zy — K, where Zy = {0,1,...,b— 1} is the least
residue system modulo b and K := {z € C : |z| = 1}, denote the function

ep(a) == ™%, a e Zy.

The k-th Haar function héb), k > 0, to the base b is defined as follows:
Ifk=0, then b (z):=1 Vo€ [0,1[. Ifk € Ay(g), g > 0, then

o
|

1
héb) () := be - ep(a-k ) D(b)(a)(a:)a

a

I
=)

with the elementary b-adic intervals

W y._ [kElg)  a kig a+l
Dy (a) = [ b9 +bg+1’ b9 po+1

The k-th normalized Haar function H,gb) on [0,1] is defined as H(()b) = h(()b), and,
ifk € Ay(g), g>0, then H" := b5 . p").
DEFINITION 2.3. The fundamental domain D of the k-th Haar function

hib) is defined as the following elementary b-adic interval: If k = 0, then D(() )=
[0,1[; if k € Ay(g), g > 0, then

-Uov- 10 o]

REMARK 2.2. The notation “fundamental domain” is not common usage. We
write hg, Hy, A(g) and Dy, if it is clear from the context which base b is meant

or if we present properties of hib) and H,gb) which are valid for all bases b > 2.
This notation will be used in the multidimensional case defined below.
DEFINITION 2.4. Let Hp := {hg’) i k= (ki, ko, ..., ks) € N§} denote the
Haar function system to the base b on the s-dimensional torus [0,1[*, s > 1. The
k-th Haar function h(b) is defined as h (5) ( ) =11, th) (zi), x =(x1,...,25) €
[0,1[°. The normalized version H is deﬁned in the same way and the k-th s-

dimensional fundamental domain denotes D =TI, D



4 K. ENTACHER

REMARK 2.3. The main properties of the Haar functions are given in [3,
Remark 2.1, 2.2]. The generalization of property (4) in Remark 2.1 of the
latter paper is the following: there are exactly (b — 1)" Haar functions hf(b),
k € Ay(g), g =(g1,..-,9s) € Ni, where s — r is the number of indices i such

that g; = —1, that have the same fundamental domain. In this case we get

HY =b°-n, with 6=13" g
i=1
9i#—1

2.2 The function class yE¢(C)

We define our function classes  E%(C) slightly different from Larcher. Since
the supports of the Haar functions hy, k € A(g), g > 0, are elementary b-adic
intervals of length b9, we define the classes with respect to the resolution b9,

For f € L'([0,1[%,),), let Sy denote the Haar series of f,

Sp(x) =Y fk)-he(x), x€[0,1, with f(k) :=/ f g ds.

KEN [0,1*

DEFINITION 2.5. For a given integer base b > 2 and for a > 0 and C > 0,
let ,E2(C) be the class of all functions f € L*([0,1[%, Xs) with f = Sy on [0, 1[*
where the Haar coefficients f have the following property

21 |fk) < VkeA(g), and g=(g1,...,9.) € N},

rp (k)
with

s 1 k‘l =0
ro(k) = [ ro(ke) and vy (ki) = { b ki € Algi), 9i 20
=1 e

REMARK 2.4. If f € ,E®(C) and o > 1/2, then the Haar series S is ab-
solutely convergent (see [1]). Example 1 below indicates a Haar series which is
divergent for all z € [0,1[° if a = 1/2.

2.3 Ezamples of functions and their classes

In this section, we present some examples of functions for different classes
2E%(C). The proofs that the functions belong to these classes are given in
Entacher|[1]!.

IThis paper is also available in the internet on the World-Wide-Web server:
http://random.mat.sbg.ac.at (also accessible via ftp).
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(1) Our test function to calculate the integration error in high dimensions is
the function F': [0, 1[*— R with

(2.2) F(x) ::Hf(a:i), x = (21,...,25) €[0,1[%, and

olet+s) _q 1 1 1
for T € 1—2—9,1—W s gZO

f(z) = 2a(2(a—%) -1) - 99(a—73)

F belongs to the class , EX(C) with a > 1/2 and C' := max{1, (2> — v/2)~*}.

(2) Consider the class Ho(L), 0 < a < 1 of functions f : [0,1[— R, where
Va,y € [0,1] : |f(z) — f(y)| < Ljz — y|*. These function classes and their
generalization to dimension s > 2 have been studied by Sobol’ [14]. It is easy to

show that Ho(L) C 2E2F2(L/2).
(3) Examples of the classes QE,S%(C’).
From (2) we obtain that the function f : [0,1[— R, f(z) := 2", n € N,
3

~ 3 ~ 3
belongs to the class  EZ (2). Therefore 2 EZ (|ao| + § Y1 @ - |a;|) is the class of
the polynomial

fl@)=a+a1z+... +a,2", neNy a; €R,

)
and o EZ (330, |a;]) is the class of the function

F(21,...,75) = ayxy + asws + ... +aszs, (21,...,25) € [0, 1"
Consider F : [0,1[*— R with
(2.3) F(zy,...,25) = (x1+ ... +25)", neN.

This function belongs to the class QES% (C) with

n!
_ 1) —
C = Z 9G—Hm=0) - [, (n; — 1)! where (—1)!:=1.

ni,..,ms=0
ni+..4ns=n

2.4 (t,m,s)-nets

In analogy to Larcher’s method of numerical integration of Walsh series, we
get optimal integration errors by using (¢, m, s)-nets. For efficient construction
methods of (¢, m, s)-nets we refer to [5, 10, 11, 12]. The results of the integration
error will be compared to the estimates derived by using the uniform lattice.

Special construction methods of (¢,m,s)-nets, the so called digital nets, play
an outstanding role in the Walsh case. First results concerning the use of digital
nets in our framework are given in [1, 2].

The definition of (¢, m, s)-nets and the basic properties are given in [12, p. 48].

DEFINITION 2.6.

Let n € N. The uniform lattice is defined as the following point set P consist-
ing of N = n® points P := {(%,,%) 0<k<n—-11<i<s}.
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3 The results
3.1 Estimates of the integration error

THEOREM 3.1. For b > 2, let f € yE*(C) with a > . Further let P =

{x0,...,XN_1} be a point set in [0,1[* and Ry (f, P) the integration error (1.1).
(a) If P is the uniform lattice with N = b™, n > 1, then

a—3%)1s 1 _a*% . - cs—1 %—ai
RN(faP)SC'A'b( 2)b 'm, Y= A.—Z;’L bl )i,

(b) The result in (a) is, apart of the constant C, best possible since there ewists
a function f € yE%(1), with

b—1)ple—3) 1

y-C .- a-1/2
pla=3) _1 N7’ s

’y =
(c) If P is a (t,m, s)-net to the base b, then

C-A- (14257 ")plata)s plat ), (log N)s__l.

<
Bv(f,P) < (log b)*—1 N(a=3)

(d) The result in (c) is, apart of the constant, best possible, since for every a > %
and C' > 0 there exists a (0,m,2)-net P to the base 2 and a function f € yES(C)
with

log N
N(a=3)"

REMARK 3.1. An analogue to Theorem 3.1 for the Walsh case is given in
Larcher and Traunfellner [9, Theorem 1 and Theorem 2]. Recent improvements
of these results can be found in [8, Theorem 1 and Theorem 2]. The (0, m,2)-
net in part (d) is an example of a digital (¢,m,2)-net. Despite the fact that
the error estimates above suggest to use (0,m,s)-nets to calculate the quasi-
Monte Carlo approximation of a function, we can give examples of 2-dimensional
functions belonging to our classes where, for example, the integration error using
a (1,m,2)-net to calculate the quasi-Monte Carlo approximation is smaller than
the error obtained by a (0,m, 2)-net (see [1, 2]).

Using (t,m, s)-nets to base 2 (originally called P,-nets), Sobol’ derived an
integration error estimate for his H, classes (compare Sect. 2.3 (2)) of the same
order of magnitude as we obtained for our classes, see [14, p. 239]. Sobol’s more
general S, classes exhibit higher error bounds.

Theorem 3.1 yields the best integration error estimate by using (0, m, s)-nets.
But for m > 2, a (0, m, s)-net in base b can only exist for dimensions s < b+1 (see
[12, Corollary 4. 21]). For applications on binary computers, efficient calculations
are done with base 2, and for this reason, (0,m,s)-nets can only exist up to
dimension s = 3.

We bridge this gap by the following theorem which shows that a function f €
yEX(C), a > 1/2, belongs to a class ,» E2(D), L > 2. This guarantees a

1

Rn(f,P)>C-202).
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calculation of the quasi-Monte Carlo approximation with (0,m,s)-nets to the
base b” in higher dimensions.
THEOREM 3.2. Let f € yE2(C) with a > L. Then we have

. - _ (at3)
feBEYC-C(a,b)®) where C(a,b) :C’(b)-B-bli
plats) 1
with
151
B=0b', L>2 ==y — .
b, L>2, and C(b) b;sinw%

REMARK 3.2. The analogue to Theorem 3.2 for the Walsh case (see Larcher
et al. [7, Theorem 3]) is proven for the case b = 2. In comparison to our result,
Larcher’s theorem is only valid for a« > 1 + 8, 0.25 < B < 0.5, and the
appropriate constant D contains B%, whereas our constant D contains only B.

3.2  Numerical results

Here, we present some numerical results of the integration error (1.1) for the
test function 2.2 described in Section 2.3 . Numerical results for function (2.3)
are given in [2]. Further numerical comparisons for special Walsh series and
the function f(z1,...,xs) := (x1+...+x5)"/?, using (¢,m, s)-nets, good lattice
points and Halton sequences are given in [6].

We normalized f, hence we get f[o 1 F(x)dx = 1 in all dimensions. Using

a= k+%, k € N, we can calculate the quasi-Monte Carlo approximation for this
function in integer arithmetic except of a final division. Thus, round off errors
are avoided. The (0,m, s)-nets, 2 < s < 9, are generated by the construction
method published in [10].

a=3/2 b=4 a=7/2 b=4
N\ 2 | 3 ] 4 5 2 [ 3 | 4 5
45 | 2.4e-05 | 3.6e-05 | 2.1e-04 | 1.2¢-03 ][ 9.0e-10 | 7.9e-08 | 8.9e-06 | 1.9e-03
45 || 1.8-06 | 6.1e-06 | 2.8¢-05 | 2.9e-04 || 4.2e-12 | 4.7e-10 | 3.6e-08 | 2.3e-05
47 || 1.3e-07 | 2.3e-06 | 2.5e-06 | 5.1e-05 || 1.9e-14 | 1.3e-11 | 2.9e-11 | 2.1e-07
48 || 9.5e-09 | 8.4-08 | 9.3e-08 | 1.1e-06 || 0.0 | 2.4e-14 | 6.0e-13 | 2.4e-10
4° || 6.7e-10 | 6.0e-10 | 1.1e-08 | 4.1e:07 || 0.0 0.0 | 4.2e-15 | 4.7e-12
a=3/2 b=8 a=7/2 b=8
N\ 6 | 7 | s 9 6 | 7 | s 9
85 || 2.3e-05 [ 2.0e-04 | 1.1e-03 | 6.8¢-03 || 4.0e-08 | 1.5e-05 | 1.7e-04 | 3.4e-01
86 | 6.1e-07 | 5.9e-06 | 1.1e:05 | 3.9¢-03 || 2.1e-10 | 1.4e-08 | 5.9e-06 | 3.4e-01
87 || 6.1e-08 | 4.1e-07 | 1.1e-05 | 3.9e-03 || 5.6e-13 | 3.3e-12 | 7.8e-08 | 3.4e-01
8% || 1.4e-00 | 1.7e-08 | 7.0e-08 | 1.9e-03 || 2.2e-16 | 7.2e-13 | 7.2e-12 | 3.0e-01
89 || 3.6e-12 | 1.3e-10 | 1.2e:09 | 3.1e-05 || 0.0 0.0 | 3.3e-14 | 7.3e-05

The following table presents some results using the uniform lattice in dimen-
sions 3 < s < 8.
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a=3/2 b=4 a=7/2 b=4
3 4 5 3 4 5
N | R~ N | R~ N | R~ N | Rwn N | Rwn N | Rwn
4% | 3.7e-04 | 4% | 7.8e-03 | 4'° | 9.8e-03 | 4° | 1.6e-07 | 4% | 5.6e-05 | 4'° | 7.0e-05
a=3/2 b=38 a=7/2 b=38
6 7 8 6 7 8
89 | 4.8e-02 | 87 [ 5.6e02 | 8% | 6.4e-02 | 8° | 1.4e-03 | 87 [ 1.6e-03 | 8% | 1.8e-03

4 The proofs

Let f € yE2(C), a > 1/2, and P = {x0,...,Xny_1} be a point set in [0, 1[*.
Since f = Sy on [0,1[%, we easily get

= > f(k) - Sn(h,P)

k#0
with
| V-1
Sn (e P) 1= 1;] hi(x,), ke N;.
From Definition 2.5, it follows
(4.1) N(f,P)<C P)-
k70

In the following, we estimate the “Weyl sums” Sy (hy, P) for the different point
sets.

4.1 Proof of Theorem 3.1

For a given g = (g1, - . ., gs) € Ni, let r, 1 <r < s denote the number of 7 with
g; > 0, and let the remalnlng gi = —1 (i.e. k; = 0). For the calculations below,
the order in (g1,...,9s) does not matter. We only have to note that there are
( ) possibilities to arrange the s — r numbers —1 in g = (g1, ..., gs). Therefore
let, w. L. 0. g., g € N] with

(4.2) gi>0for 1<i<r and g¢g;=-1for r+1<i<s.

Part (a) Let P be the uniform lattice with N = 5™ points.

LEMMA 4.1.
(1) Sy (h,P) =0 for allk € A(g) and g with at least one g; < n for1 < j <r.
(2) For all g with g; > n, 1 < j <r, we have

b=  for (b—1)"b"™ wectors k € A(g)
SN(Hkap) =

0 otherwise.
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PRrOOF. (1) W. L. o. g., we consider the case
OSgla"'agl<n and gl+17"'7g7"2n7 1§l§7"

The fundamental domain Dy of hy, k € A(g) has the form

(43) Dy = ﬁ |:kz(gz)’ kz(gl)+ 1 |: > [0, 1[3—7":: HIZ

b9i b9i
i=1

Two cases are possible:
Case I: D NP =0, then Sy (hy,P) = 0.
Case II: l
H(Dg N P) = ble=rm T b9 ;
i=1
In the second case, each of the intervals I;, 1 < i < [, has b" ™9 possibilities
for the i-th coordinate, and the intervals I;, [ + 1 < i < r, contain exactly one
coordinate z; of a lattice point x € P. Further, Hy,(z;) = 1 as the coordinate
x; necessarily belongs to Dg,(0). Finally, each of the I;, r + 1 < i < s, has b”
possibilities for the i-th coordinate argj), 0<j<b"—1, where H(](LEEJ)) =1.
The intervals Iy,...,I; are partitioned into b elementary b-adic subintervals

b-ki(g:) +a;i b-ki(g:)+a;+1
b9it+1 ’ pgit+1

Dy, (a;) = {, 0<a;<b-1, 1<i<l.

Each of these subintervals contains "9 ~! > 1 coordinates. Hence we get

l

S (Hie, P) = b0~ an LS enfan

i=1a;=0
N _
~~

=0

(2) Similar to part (1), if D NP = @, then Sy (hy, P) = 0. Otherwise, we have,
8(Dy NP) = b7(5=7) Since, from \(I;) < b™", 1 < i < r, it follows that the

first 7 coordinates (&, . .., bn) of a point p € Dy NP are fixed. The remaining

R

coordinates vary in {0,1/b",...,(b™ — 1)/b"}. Therefore
1 ) ) 1
Sn(HiP) = ﬁHh(,i—;)---Hkr(,i—z) S Ho(s) - Holl)
lpg1,0.00s=0

For any number z = [;/b", we obtain that the digit zg, = 0, because of g; >
n, 1 <14 <r. From this, it follows that Hy, (z) = ey(zy, - (ki)g:) = 1.

There are b"" possible Dy with #(Dy NP) = b?(5=7). For a given Dy, there
are (b — 1)" different k € A(g) to get this particular fundamental domain. We
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only have to vary the digit (k;),, € {1,...,6— 1} for 1 < i < r. Thus we
get Sy (Hy,P) = b="" for (b — 1)"b"" points k € A(g), and Sy (Hy,P) =
otherwise. 0O

We continue with Part (a) of the proof of Theorem 3.1. For a given g € Nj
with property (4.2), let

1
Sei= D oge 15w Pl
keA(g)

Using Lemma 4.1, we only have to consider g with g1,...,¢g, > n. In this case
we obtain
Sg < (b— I)Tb(%—a)(gﬁ...-q-g,)-

By partitioning the sum on the right side of (4.1) into areas A(g), we get

SETD SICIURETD SIND SR

91:es gr=n
i=rn
g1+ +gr=i

ere are z—rn+ ~* solutions ot g1 + ...+ g, = 72 W1
Th ety < 1)1 soluti f i with

gi>mn, 1<j S T (se [1, Sect. 1.1]). This yields

o0

[LP) < CZ b -1 —a)(rn-1) Zis_lb(%_o‘)i

i=1

=:A
a— 1/2

< C-A-plem2)ps . N

Part (b) We consider the function f:[0,1*— R,

=Y fK

keN§

with f(kl,(), ...,0)=b79% for k; € A(g), g >0, and f(k) = 0 otherwise. This

definition yields f € ,E%(1), and with g := (g1, —1,...,—1), g1 >0,
Z > bg — S (e, P)| -
91=0keA(g

Using Sn (hi, P) = b'T Sy (Hy, P) and Lemma 4.1 for r = 1, we get

_i b—1 _ (b1~ >_ 1
= :nbgla_; ) _

1 a—1/2 °

pla—3 N

Part (c) Let P be a (t,m, s)-net in base b and g € Nj with property (4.2).
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LEMMA 4.2.
(1) Sn(hy,P) =0 for all k € A(g) and g with Y.°_,(gi +1) <m —t.
(2) [Sn(Hy,P)| < b lo1tt90) for all k € A(g), and g with

8
m—t<2(gi+1)<m—t+r.
i=1

Note that this case is only possible for 2 <r <s.

(3) If >0 1(9i+1) > m —t+r, then there are at most (b — 1)"b™ vectors

k € A(g) with |Sx(Hy,P)| # 0. In this case we have |Sy(Hy,P)| < bi=™,
PROOF. (1) The fundamental domain Dy of hy, k € A(g), is partitioned into

b" elementary b-adic subintervals of the form

I =] Dxi(ai) x 0,17,
i=1

where the a; vary in {0,...,b— 1}. The function hy is obviously constant on
each interval I. The requirement Y 0  (g; +1) <m —¢ yields A\s(I) > bi™™
so that each I contains exactly Ag(I) - b™ points of P. Hence, we have

b—1 b—1 r
1 9
Sn(he,P) = sy Do 2 [0 enlaikg) = 0.

a1=0 ar=11i=1

(2) The inequality m—t—r < g;+...+g, < m—t yields b'~™ < X\(Dy) < b"+t—™,
Therefore §(Dx N P) = b™A(Dy) and thus we get |[Sy(Hg,P)| < A(Dy) =
p—(g1+-+9r)

(8) In this case we have A\(Dy) < b'=™. Hence, Dy contains at most b’ elements
of P. The result follows easily from Remark 2.3. 0O

We continue with the proof of Part (c¢) of Theorem 3.1. Again, we consider

1
Sei= D, e 1Sv(e Pl
keA(g)

For the case (2) of the lemma above, we get Sg < (b—1)"-b(z =) (91+-+497) and
for the case (3) Sg < (b—1)" - b - b(z—)(g1+-+9-)  This and part (1) of the
lemma above yield

Py < CZ (b—1)" Z p-a)(g1+.+gr)

8 o0

AU HIES IS p(E—a) g1+ +gr)

r=1 911y gr=0
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The number of solutions of the equation g1 + ... + g, = i, g; € No, equals
("t71) < (i + 1)7 L. This yields

r—1

r—1

Ry(£,P) < CY ()= (m—t—r+14i) 1pame)m=tmrsd
r=2

i=1
HOHY (0= (m—t—r+ 14 4)s pEme)motord),
r=1 i=r

For alli € N we have m—t—r+1+4i < m-i forr > 2, and m—t—r+1+i < (m+1)-i
for r > 1. Hence
msflb(afé)(t+s) i

RN(f,P) < C’.WZ(i)(b_l)r;isfle*a)i

r=2
ms—19s—1ptpla—3)(t+s) 5

e pa—Dm PIHICESE ;is_lb(%—a)i_

r=1

Again let 4 := Y2 i5=15(z=9)i_ then we get the result

C-A-(1+25-1)plata)tts)  (Jog N)s—1

<
RN(faP) = (log b)871 Na_%

Part (d) is proven in Entacher[2].

Proof of Theorem 3.2

Let B = b", L > 2, for a given base b > 2. We shall prove the result by
induction for dimension s.
Case I: dimension s =1

We start with the examination of the Haar series S,(f), hy € Hp, with respect
to the system Hp. To avoid too many indices, we shall denote the Haar coeffi-
cients of a given function f with respect to the system Hpg by f(n), hence with
argument n. Further we will use the argument & to signify that f(k) denotes the
Haar coefficient of f with respect to the Haar system H;. In the next lemma,
we shall prove that the k-th Haar function hy € Hj is a Haar polynomial with
respect to the system Hp. .

LEMMA 4.3. Let k € Ag(j), j > 0. Then the n-th Haar coefficient hy(n) with
respect to the system Hp of the k-th Haar function hy € Hy is equal to zero for
alln withn < BY orn > BT, If k=0, then hAk(n) =0 for alln > 1.

PRrROOF. We have

hn(n) = /D hie(2) BB (2) da.

The case k = 0 is easily verified. Let j > 0 and n > B/*!. Then we have either
Di N D%B) =0 or D%B) C Dy. In the second case, the Haar function hy, is
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constant on Dy, N D) = D) and therefore ﬁ;(n) = 0. The inequality n < B’

is treated similarly. O
COROLLARY 4.4. Let B < k < B/*!, j € Ng. The Haar function hy, € Hy
has a finite Haar series with respect to the system Hp, and

> P (@),

n€Ag(J)

Let f € ,E2(C). Our goal is to estimate the Haar coefficients f(n), n € N.
The following lemma shows a representation of the numbers f(n) in terms of the

Haar coefficients f(k) with regard to H; and the Haar coefficients hy(n) with
respect to the function system Hp.
LEMMA 4.5. If f € yEX(C), a > 1/2, then

L(g+1)—

fn) = Z > fk)hi(n) for neAp(3), §>0.

9=Lg k€eA(g)

This lemma will yield the order of f(n) if we are able to estimate ﬁ;(n)
ProoF. We have

Se(

|I
\m

0o (G+1)L—1
Z Z > f)h()
keA(g)

g=0 g=3L

Since k € A(g) with gL < g < (g + 1)L if and only if B9 < k < B9*t!, Corollary
4.4 yields

Sp@) = fO)+) o k)Y )P (@)

(g+1)L—1

0+ Y [ Y fe hP (2).

=0 neAg(3) 9=gL keA(g)

I
~
—~

(=]
=

This yields the result. 0O
Let us consider the integers k,n, with B9 < k,n < B9*!, § > 0, since from
Lemma 4.3 it follows that only in these cases hi(n) # 0 is possible.

In the following, let n € Ag(g), g > 0, and k € A(g) with Lg < g < L(g+ 1),
more precisely

(4.4) n€Ag(g) and ke A(g) with g=Lg+j, 0<j<L.
Further let us define

— B — 15(a) glatl)[ @._nlg  a
E,:=D)\" (a) =[5, [ with g% .= 57 +B§+1’

0<a<B.
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Since
_B-1
WP (z) = B> Y epla-ng) - 1g, (),
a=0
we get
(4.5) hi(n) = B2 eg(a-ng) - 1g, (k)

a=0

From Hellekalek [3, Lemma 3.2], we conclude that we may have 15, (k) # 0 only
if k(g) € {b9 - B (g),b9 - 82TV (g)}, and in this case the given estimation of
|15, (k)| does not depend on the explicit value of k(g). Therefore we have to
examine the set

A(k,g) :=={a€{0,...,B=1} : k(g) =b* - 8 (g)}.

The case k(g) = b93(P)(g) will be treated below.

Let n(g) = fig+n1B+...+7f;_1 B! be the B-adic expansion of n(g). Changing
to base b yields n(g) = no + nib+ ...+ ngz_1b"9=1 n; € {0,...,b — 1}, and
from this we get for a = ag + a1b+ ...+ ar_1b" 7,

n(G) -B+a=ap+ab+...+ap 1bF 1 +ngbt +.. + nLg,lbL@H)*l.

Because of g = Lg+j, j € {0,...,L — 1}, it follows

a 0.npz—1npg—o...noar—1-.-ar—; if j7>1
B (g) = { I T
O0.npg—1...m0 if j=0,

and ﬁs(,a) =ar—j—1. Thus we have
by -ﬂ(a) (g) =ar—j; + aL_j_Hb +...4+ aL_lb];l + nobj + ...+ nLg_lbgil.

The requirement k(g) = b9 - 5(9)(g) is equivalent to ko = ar—j, ..., kj—1 =
ar—1,kj =ng,...,kg—1 =nrz—1. Hence, the numbers a have the form

a=ag+arb+...+ aL_j_lbL_j_l + kobL_j + ...+ kj_lbL_l.
If we vary ao,...,ar—j—1, we get
Alg, k) ={b"7 - k(j)+i : i €{0,...,bF79 —1}} and #A(g,k) = b"7.
Note that if a = b¥=7 - k(j), then ap = 0,...,ar—j—1 = 0, and therefore

(4.6) B =0 and B -p(g+1)=0.
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Finally, we have to consider the case 3(F) = (n(g) + 1)/B9, since the case
k(g) = 98P (g) is not included above. Here we distinguish between 5B = 1
and 8(®) < 1. Let a := B — 1. The first case yields 1p_ (k) = —1,(k), J :=
[0, 3], and therefore we have 15, (k) # 0 only if a € A(g, k) due to the above
proof. If 3(B) < 1, one can easily show that ﬂéB) =0and 8B - 3B (g+1) = 0.
From Lemma 3.1 in [3], we observe that 1z, (k) = —1,, J := [0, 3], and we
are in the same situation as before.

Let us return to the examination of hAk(n) in (4.5).

LEMMA 4.6.

Ifn € Ag(g), g >0, and k € A(g) with g = Lg+ j, 0 < j < L, then there are
ezactly (b— 1) - b integers' k € A(g) with \a(n)\ # 0. In this case we have

1

kg
sinm =+

e

hi(n)| < B 6777 b~

PrROOF. The considerations above yield
Alg, k) = {b" k() +i : i €{0,...,b"77 —1}}.

Let k(j) # 0. We consider a = bL~7 - k(j) — 1. Then a ¢ A(g,k), but a +1 =
bl=7 - k(j) € A(g, k). In this case, (4.6) implies that ﬂgaH 0 and plet) —
B+t (g+1) = 0. Hence Lemma 3.1, Part 2 of Hellekalek [3] implies 1/E\(k) =0.
If k(j) = 0, the situation above is not possible, since A(g, k) = {0,...,b* =7 —1}.
Hence for both cases, k(j) # 0 and k(j) = 0, we obtain, by equation (4 5),

e |

Z eB(ai-ng)-l/];”(k) with a; := b"~Tk(j) +i

i=0

[NET]

hi(n) = B

The result follows from Lemma 3.2 in [3] and from the fact that there are b/
different possibilities for k(j) and b — 1 possibilities for k,. O
Now we are able to estimate f(n). Lemma 4.5 yields

L(g+1)—

‘<C Z Zbga- kn.

9=Lg keA(g)

Using j = g — Lg and the lemma above, we get

b—1
1 —~ 1 3 1 1
_ . =16
Z b9 [ ()] < pala+3) B b sinmd "’
kGA(Q) a=1 b
—_——
=:C(b)

IThese are exactly the numbers k with kg € {1,...,b — 1}, and k(g) varies arbitrarily in
{0,1,...,60 — 1}.
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Finally we observe that

f C-C(b)-B blat?) L
fm)l<CC) B
—: C(a, b)

Case II: dimension s > 2
The proof of this case is obtained by induction, in same way as in [7, p. 709].
In the latter paper a similar theorem is proved for the Walsh case.
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