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We present a spectral test analysis of full-period subsequences with small step sizes generated
by well-known linear congruential pseudorandom number generators. Subsequences may occur in
certain simulation problems or as a method to get parallel streams of pseudorandom numbers.
Applying the spectral test, it is possible to find bad subsequences with small step sizes for almost
all linear pseudorandom number generators currently in use.
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1. INTRODUCTION

Linear congruential generators (LCGs) are the best analyzed and most widely used
pseudorandom number generators (PRNGs). We will denote this PRNG with un-
derlying recursion y,+1 = ay, + b (mod m) and seed yo by LCG(m,a,b,yo),
a,b,y0 € Z,,. LCGs allow an easy (number-) theoretical analysis based on the
lattice structure formed by s-dimensional vectors x{*) = (z,...,Tpts—1),n > 0,
generated from the periodic sequence x = (% )n>0, Tn = Yn/m. The quality of
LCGs heavily depends on the coarseness of the lattice (e.g. see [Knuth 1981]).

In order to find “optimal” parameters for LCGs, several figures of merit for the
lattice structure have been proposed. The most popular measure is the spectral
test which gives the maximal distance ds; between adjacent parallel hyperplanes, the
maximum being taken over all families of parallel hyperplanes that cover all vectors
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x(2) (see [Coveyou and MacPherson 1967; Knuth 1981; L’Ecuyer 1988; Fishman
1996]). Several LCGs have been proposed due to their good spectral test results in
different dimensions. To compare spectral test results among dimensions Fishman
and Moore [1986] introduced a normalized spectral test Sy := d*/ds, for which
0 < S; < 1. The constants d* are absolute lower bounds on ds for s < 8 [Knuth
1981, p. 105]. With this, Fishman and Moore made an exhaustive search for LCGs
whose normalized spectral tests in dimensions 2 to 6 exceed 0.8. Lower bounds
d: for dimensions s > 8 are given in [L’Ecuyer 1998]. However, simulations of
Afflerbach and Gruber [1994] show that the number of LCGs with normalized
spectral test values exceeding 0.8 (or for example falling below 0.1, compare Section
3) decreases very rapidly with the dimension.

Another aspect should be discussed as well: why do people analyze merely the
lattice of overlapping vectors x{, in order to get “good” LCGs. More general

n
vectors might be considered, for example:

chsrl+i = (xkn+i7xk(n+1)+i7 s 7mk(n+sfl)+i)7 k> 1, 0<:i< k—1.
The examination of the structures of these vectors leads to a correlation analysis
of subsequences

(mkn+i)n20; k‘ 2 ]., 0 S ) S k? — ]., (].)

of the sequence x. Subsequences may occur in simulations or when parallel streams
of PRNs are obtained by splitting (see [Anderson 1990]).

Section 3 of this paper presents bad (in terms of the spectral test) full-period
subsequences with small step sizes for many LCGs that were proposed in scientific
papers and that have extensively been used in simulation.

From our results we conjecture that for almost all linear pseudorandom number
generators currently in use, bad subsequences with small step sizes occur. It is
necessary to draw attention to this property of linear methods. Even for top gen-
erators from earlier tables containing parameters for LCGs we found subsequences
with lattice structures that are even worse than those of RANDU.

Our spectral tests have been calculated using the dual lattice approach [Dieter
1975] and a Mathematica implementation of the Fincke-Pohst algorithm for finding
the shortest vector in a lattice by Wilberd van der Kallen®.

Related correlation analysis for large step sizes (long range correlations) for LCGs
have been made by [De Matteis and Pagnutti 1992; De Matteis and Pagnutti 1995].
Recently, L’Ecuyer [1997] studied bad lattice structures for special vectors of non-
successive values produced by some linear recurrences. An efficient algorithm of
the spectral test which facilitates the analysis of lattices generated by vectors of
successive or non-successive values produced by linear congruential generators with
moduli of essentially unlimited sizes was derived by L’Ecuyer and Couture [1997].
A modified spectral test to analyze the independence of parallel streams of linear
pseudorandom number generators was proposed by MacLaren [1989]. The latter
paper is the basis for 273 combined multiplicative LCGs implemented in the Nag
PVM Library (Chapter G05).

IThe package ShortestVector.m and related Packages are available on the World-Wide-Web at
http://www.math.ruu.nl/people/vdkallen/kallen.html and http://random.mat.sbg.ac.at/.
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2. WELL-KNOWN LCGS

In this section we present classical and recent LCGs that were implemented in
commercial software, used in applications, and some of which have extensively
been tested. Further references for these generators (including implementations,
empirical tests and lattice analysis) are given in [Entacher 1997a].

(1) LCG(23,1103515245,12345,12345) is the generator employed by the ANSI C
rand () function [Park and Miller 1988; Ripley 1990].

(2) LCG(23' —1,7° = 16807,0,1) was proposed by Lewis, Goodman, and Miller
[1969]. Park and Miller [1988] suggested to use this LCG as a “minimal stan-
dard” generator. For implementations in commercial software and empirical
tests see the latter paper and [Fishman 1996; Dudewicz and Ralley 1981; Rip-
ley 1990; L’Ecuyer 1988; Vattulainen et al. 1995].

(3) LCG(23' —1,630360016,0,1) was proposed by Payne, Rabung, and Bogyo
[1969] and implemented in the SIMSCRIPT II simulation programming lan-
guage [Fishman and Moore 1986; Fishman 1996; Ripley 1990; L’Ecuyer 1988].

(4) LCG(23' —1,397204094,0, 1) is one of the best LCGs from a study of Hoaglin
[1976] and was for example implemented in the SAS and IMSL Lib. [Fishman
and Moore 1986].

(5) The LCG (a) LCG(232,69069,0, 1) also implemented as (b) LCG(2%2, 69069, 1,0),
is called Super-Duper and was implemented on IBM computers (see [Fishman
and Moore 1986; Fishman 1996; De Matteis and Pagnutti 1992]). The ver-
sion (b) for example is part of the VAX VMS-Library [Ripley 1990] and was
implemented by the Convex Corp [Vattulainen et al. 1995].

(6) LCG(2%2,3141592653,1,0) is implemented in the mathematical software Derive
(http://www.derive.com). Note, that this generator performs a bad spectral
test in dimension 2 (see the table below). The multiplier probably stems from
Knuth [1981] who considered a similar generator with modulus 23°.

(7) LCG(2%5,5' = 30517578125, 7261067085,0) was studied in [Knuth 1981]. It
was implemented in the BCSLIB (Boeing Computer Services LIB) [Anderson
1990]. The multiplicative version of this LCG was implemented in the pro-
gramming language SIMULA. A long range correlation analysis of this version
is given in [De Matteis and Pagnutti 1992].

(8) LCG(2%,5'% = 1220703125,0,1) [Knuth 1981] was implemented on Apple
computers [Jennergren 1983].

(9) The top five LCGs respectively modulus 23 —1, 232 and 28 from an exhaustive
study of [Fishman and Moore 1986; Fishman 1990; Fishman 1996]. We present
results of the following four examples which exhibited the worst subsequence
behavior: (a) LCG(23 —1,950706376,0, 1), (b) LCG(232,2396548189,0, 1), (c)
LCG(2%%,3934873077,0,1), (d) LCG(2*®,55151000561141,0, 1)

(10) LCG(10*? — 11,427419669081,0, 1) is implemented in the mathematical soft-
ware Maple [Karian and Goyal 1994].

(11) LCG(28,25214903917, 11,0) is the ANSI C system generator drand48().

(12) LCG(28,44485709377909, 0, 1) was implemented on CRAY systems (see [An-
derson 1990; De Matteis and Pagnutti 1995; De Matteis and Pagnutti 1992])
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and used in PASCLIB, a collection of utility subprograms that are callable from
PASCAL on CDC CYBER computers (see [Fishman 1990]).

(13) LCG(2°%%,13'3,0,123456789 - (232 + 1)) is the basic generator for PRNGs in
many different distributions implemented in the NAG Library [The Numerical
Algorithms Group Limited 1991, Sect. GO05], see also [Afflerbach and Gruber
1994; Vattulainen et al. 1995].

(14) LCGs from the studies [L’Ecuyer 1988; L’Ecuyer et al. 1993]. These generators
have been chosen according to their good lattice structure. We give results for
the LCGs (a) LCG(2147483563,40014,0,1), (b) LCG(2147483399,40692,0,1)
(see also [Fishman 1996]) and (c) LCG(2% — 25,2307085864,0, 1).

3. BAD SUBSEQUENCES

In this section we present results of a spectral test analysis of full-period subse-
quences (1) with step sizes 1 < k < 1000 for the LCGs above. Supplementing
results are available via internet [Entacher et al. ; Entacher 1997b]. Consider a
mixed linear congruential generator LC'G(m,a,b,0) with maximal period T'. For
this generator, the subsequence (1) is also produced by (see also [Ripley 1990;
L’Ecuyer 1994])

LCG (m, a® (mod m), b- a’ 1 (mod m),b- =L (mod m)) , 0<i<k-1

a—1 a—1

For the multiplicative LCG(m,a,0, 1), the corresponding LCG which produces the
subsequence (1) is given by

LCG(m, a* (mod m), 0,4’ (mod m)), 0<i<k-1.

Note that the period of these subsequences equals T'/ged(k, T'). Even if one chooses
subsequences with maximal period T', the quality of these sequences may be signif-
icantly reduced.

In the tables below we present results of the normalized spectral test Ss in di-
mensions 2 < s < 8 for full period subsequence-LCGs generated from the LCGs
given in Section 2. We give those results for step sizes 1 < k£ < 500 and ¢ = 0
where at least one value is lower than 0.1, and some mentionable results for step
sizes 501 < k& < 1000.

|[LCG| k [ s=2] 3 | 4 | 5 | 6 | 7 | 8 ]
1 25 0.0822 | 0.7978 0.6059 0.7767 | 0.6327 | 0.5936 | 0.6096
81 0.0840 | 0.6378 0.5062 0.7045 | 0.6193 | 0.4904 | 0.6850
203 0.1499 | 0.0600 | 0.0841 | 0.1631 | 0.2624 | 0.4197 | 0.5863
209 || 0.0588 | 0.3732 0.6954 0.4086 | 0.4421 | 0.7071 | 0.6951
221 || 0.0599 | 0.8012 0.5197 0.7360 | 0.4368 | 0.3873 | 0.4915
283 || 0.0505 | 0.8271 0.4279 0.6979 | 0.4271 | 0.6744 | 0.5981
375 || 0.0807 | 0.2111 0.7582 0.6735 | 0.5900 | 0.6655 | 0.6430
379 0.1874 | 0.0888 | 0.5023 0.7910 | 0.5700 | 0.6036 | 0.4962
395 || 0.0469 | 0.5375 0.5623 0.3172 | 0.6193 | 0.5976 | 0.6357
471 || 0.0850 | 0.5473 0.8368 0.5458 | 0.3519 | 0.4855 | 0.6321
557 || 0.0411 | 0.5127 0.5025 0.4871 | 0.7188 | 0.6324 | 0.5620
665 || 0.0419 | 0.7994 0.5932 0.4233 | 0.4228 | 0.6761 | 0.7497
689 0.7866 0.5055 0.7553 | 0.0870 | 0.1142 | 0.1826 | 0.2550
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|[LCG | k [ s=2 ] 3 | 4 [ 5 [ 6 [ 7 | 8
2 25 [ 0.5967 [ 0.0783 | 0.4427 | 0.5401 [ 0.4780 [ 0.5036 | 0.5600
289 || 0.0574 | 0.5886 | 0.5451 | 0.4360 | 0.7706 | 0.5244 | 0.6058
3 431 ]| 0.0725 | 0.7368 | 0.6866 | 0.5817 | 0.5916 | 0.5804 | 0.6430
719 || 0.4378 | 0.8154 | 0.0776 | 0.21959 | 0.4288 | 0.6857 | 0.7372
4 101 | 0.0456 | 0.4036 | 0.7808 | 0.5760 | 0.6238 | 0.7071 | 0.7277

515 || 0.0235 | 0.8063 0.7670 0.6113 | 0.6991 | 0.6556 | 0.5345
571 0.3566 | 0.0790 | 0.4125 0.4779 | 0.4484 | 0.6673 | 0.6430

5a 59 0.0910 | 0.6132 0.5992 0.7485 | 0.6342 | 0.5902 | 0.6648
81 0.0594 | 0.6492 0.8133 0.6886 | 0.6249 | 0.6729 | 0.6771
99 0.0202 | 0.20708 | 0.6000 | 0.29328 | 0.4180 | 0.4603 | 0.6350
135 0.6758 0.6143 0.5708 | 0.0999 | 0.1281 | 0.2016 | 0.2781
153 0.1729 | 0.0567 | 0.2795 0.7636 | 0.5872 | 0.5360 | 0.4071
319 || 0.0462 | 0.3751 0.3507 0.6830 | 0.5382 | 0.7542 | 0.5757
459 || 0.0847 | 0.3762 0.8955 0.7114 | 0.5327 | 0.5494 | 0.6812
565 || 0.0034 | 0.0678 | 0.3617 0.5627 | 0.6806 | 0.6707 | 0.7012
739 0.5703 | 0.0095 | 0.0500 | 0.1367 | 0.2608 | 0.4103 | 0.5660

5b 59 0.0910 | 0.7726 0.6663 0.6431 | 0.6518 | 0.7016 | 0.5590
99 0.0405 | 0.3182 0.5635 0.6835 | 0.3863 | 0.6281 | 0.6092
153 || 0.0864 | 0.1429 0.3797 0.6811 | 0.6310 | 0.5449 | 0.5413
319 || 0.0924 | 0.8428 0.4814 0.7258 | 0.6108 | 0.6187 | 0.6495
561 || 0.0523 | 0.7282 0.5033 | 0.25952 | 0.5186 | 0.5846 | 0.7235
565 || 0.0069 | 0.0854 | 0.2773 0.4265 | 0.5597 | 0.7448 | 0.6124
739 0.7771 | 0.0238 | 0.0354 | 0.1036 | 0.2070 | 0.3366 | 0.4760

6 1 0.0972 | 0.5552 0.5479 0.3216 | 0.6426 | 0.5210 | 0.6731
33 0.4475 | 0.0591 | 0.1450 0.3601 | 0.3438 | 0.5590 | 0.6495
7 45 0.7494 0.7596 | 0.0766 | 0.2122 | 0.4544 | 0.7216 | 0.6590

173 || 0.0346 | 0.5739 0.7012 0.4710 | 0.6424 | 0.7495 | 0.6430
191 || 0.0357 | 0.6696 0.5452 0.5674 | 0.7189 | 0.6316 | 0.5843
211 || 0.0976 | 0.6126 0.6051 0.6696 | 0.6798 | 0.6584 | 0.5600
381 || 0.0126 | 0.6856 0.5985 0.4340 | 0.6231 | 0.6705 | 0.6764
455 0.5334 | 0.0822 | 0.4893 0.7785 | 0.7579 | 0.5129 | 0.5662
979 0.1972 | 0.0953 | 0.0767 | 0.1991 | 0.2416 | 0.4127 | 0.5191

8 137 || 0.0852 | 0.7675 0.8369 0.6168 | 0.6955 | 0.4886 | 0.6433
347 || 0.0742 | 0.6361 0.4923 0.5889 | 0.6231 | 0.7238 | 0.5467
389 || 0.0842 | 0.2864 0.6831 0.5616 | 0.4998 | 0.6828 | 0.6484
473 || 0.0390 | 0.2830 0.7305 0.4483 | 0.7650 | 0.5517 | 0.6585
999 0.4899 | 0.0538 | 0.2961 0.8791 | 0.7014 | 0.5869 | 0.7019

9a 29 0.0903 | 0.5806 0.2860 0.6150 | 0.7007 | 0.5815 | 0.5641
377 || 0.0890 | 0.3379 0.8685 0.5384 | 0.7027 | 0.6343 | 0.6799

9b 65 0.0968 | 0.4785 0.5557 0.7437 | 0.4426 | 0.6962 | 0.7433
105 0.9260 | 0.0095 | 0.0500 | 0.1367 | 0.2608 | 0.4103 | 0.5660
393 || 0.0819 | 0.3344 0.3458 0.8119 | 0.5852 | 0.5414 | 0.7358
475 0.7448 | 0.0775 | 0.3443 0.7041 | 0.6117 | 0.5599 | 0.6648
615 0.6456 0.8049 | 0.0673 | 0.1839 | 0.3509 | 0.5223 | 0.7206
619 0.6735 | 0.0867 | 0.3750 0.5578 | 0.4963 | 0.6166 | 0.4930
857 || 0.0440 | 0.0561 | 0.2992 0.8176 | 0.4504 | 0.5278 | 0.5512
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[LCG | k [ s=2 3 4 5 6 7 8
9c 23 [ 0.2118 [ 0.0378 [ 0.0500 | 0.1367 [ 0.2608 [ 0.4103 [ 0.5660
43 || 0.8975 | 0.8154 | 0.3505 | 0.0999 | 0.1281 | 0.2016 | 0.2781
91 || 0.0313 | 0.0775 | 0.1456 | 0.2213 | 0.4222 | 0.6642 | 0.6084
121 || 0.7674 | 0.0890 | 0.4754 | 0.6995 | 0.5751 | 0.4788 | 0.6564
155 || 0.7266 | 0.0811 | 0.3766 | 0.4948 | 0.5751 | 0.6374 | 0.6564
275 || 0.0852 | 0.7249 | 0.5908 | 0.7370 | 0.5148 | 0.7863 | 0.6606
497 || 0.0644 | 0.4851 | 0.5546 | 0.8111 | 0.4582 | 0.7208 | 0.6394
9d 23 | 0.2562 | 0.0600 | 0.0114 | 0.0462 | 0.1275 | 0.2031 | 0.2078
43 | 0.0863 | 0.8345 | 0.5441 | 0.5609 | 0.7319 | 0.5805 | 0.6940
243 || 0.0247 | 0.6995 | 0.5934 | 0.7342 | 0.4729 | 0.6175 | 0.6146
263 || 0.8887 | 0.0677 | 0.4030 | 0.3487 | 0.7188 | 0.5005 | 0.6007
361 || 0.0454 | 0.6792 | 0.5134 | 0.5375 | 0.6241 | 0.7147 | 0.6202
10 175 || 0.0812 | 0.3844 | 0.4763 | 0.4475 [ 0.5110 | 0.6578 | 0.4791
667 || 0.1870 | 0.0823 | 0.6566 | 0.7010 | 0.5559 | 0.4799 | 0.6663
807 || 0.0198 | 0.3513 | 0.5817 | 0.7890 | 0.5221 | 0.6933 | 0.4904
11 37 | 0.0928 | 0.3579 | 0.7156 | 0.4162 | 0.4727 | 0.4237 | 0.6838
179 || 0.0369 | 0.6996 | 0.7944 | 0.4642 | 0.5715 | 0.6699 | 0.6514
201 || 0.7225 | 0.0865 | 0.4669 | 0.7351 | 0.7585 | 0.6044 | 0.6297
221 || 0.0693 | 0.5557 | 0.5967 | 0.5030 | 0.6115 | 0.6153 | 0.5493
245 || 0.0986 | 0.6502 | 0.4324 | 0.4937 | 0.6014 | 0.3779 | 0.4386
455 | 0.0595 | 0.8079 | 0.8111 | 0.7490 | 0.6522 | 0.6518 | 0.6118
477 || 0.0851 | 0.5524 | 0.7133 | 0.6256 | 0.3850 | 0.6207 | 0.5754
12 377 | 0.8594 | 0.0657 | 0.8311 | 0.5215 | 0.6745 | 0.5507 | 0.5781
429 | 0.0596 | 0.3552 | 0.7118 | 0.5798 | 0.6514 | 0.4159 | 0.3579
493 | 0.0398 | 0.8850 | 0.5762 | 0.8112 | 0.5623 | 0.4743 | 0.6661
781 || 0.7646 | 0.0212 | 0.0587 | 0.2790 | 0.7514 | 0.6936 | 0.4664
799 || 0.9011 | 0.0488 | 0.2179 | 0.3134 | 0.6285 | 0.4168 | 0.3933
13 13 || 0.0875 | 0.7036 | 0.2369 | 0.7165 | 0.6532 | 0.6219 | 0.5455
621 || 0.5723 | 0.0520 | 0.4537 | 0.7085 | 0.5678 | 0.6709 | 0.6851
14a | 17 [ 0.0759 | 0.7824 | 0.6206 | 0.6302 | 0.4858 | 0.7311 | 0.6850
151 || 0.0867 | 0.5127 | 0.3711 | 0.6548 | 0.5538 | 0.6831 | 0.6695
341 || 0.4269 | 0.8898 | 0.0964 | 0.2727 | 0.5324 | 0.7799 | 0.7635
355 || 0.0836 | 0.2856 | 0.8811 | 0.5787 | 0.6819 | 0.5036 | 0.7034
451 || 0.0633 | 0.6104 | 0.6010 | 0.6135 | 0.6924 | 0.7838 | 0.5600
14b | 33 | 0.0088 | 0.3013 | 0.3845 | 0.6992 | 0.6632 | 0.6371 | 0.5961
87 | 0.0996 | 0.4503 | 0.6798 | 0.6872 | 0.4139 | 0.6418 | 0.6747
137 || 0.5268 | 0.0901 | 0.5026 | 0.6123 | 0.7730 | 0.6162 | 0.6357
173 || 0.6510 | 0.0730 | 0.4131 | 0.6512 | 0.7255 | 0.4282 | 0.5981
175 || 0.0928 | 0.5712 | 0.7406 | 0.6979 | 0.3616 | 0.4952 | 0.6626
821 || 0.0510 | 0.2872 | 0.4281 | 0.7266 | 0.7921 | 0.4564 | 0.5078
929 || 0.0661 | 0.5085 | 0.5660 | 0.5613 | 0.8333 | 0.6036 | 0.6247
14c | 227 || 0.6895 | 0.6913 | 0.0447 | 0.3830 | 0.5805 | 0.6518 | 0.6290
313 || 0.0748 | 0.7943 | 0.6057 | 0.4944 | 0.5875 | 0.5186 | 0.6638
613 || 0.0363 | 0.8497 | 0.7142 | 0.5218 | 0.5669 | 0.6098 | 0.6043
923 || 0.5395 | 0.0322 | 0.4291 | 0.6869 | 0.4425 | 0.6472 | 0.4852
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Note that spectral test results lower than 0.1 did occur only for dimensions 2 <
s < 5. The worst generators with respect to subsequence behavior are LCG 1,
5a, 9b, 9c and 9d. For these generators there exist “small” subsequences whose
spectral test results have the same order of magnitude as RANDU’s. The graphics
in Figure 1 show the lattice structures in dimension three for the subsequences of
the Fishman LCGs 9b with k£ = 105 (30000 overlapping vectors in [0, 1[*) and for
LCG 9d with k£ = 23, Note, that the second graphics shows a zoom into [0, 0.0002[
containing all overlapping vectors.

LCG 9b LCG 9d

Fig. 1. The lattice structure of subsequences from LCG 9b and 9d in dim. three.

The LCGs 3, 12, 14c show the “best” subsequence behavior. Weak full-period
subsequences for these generators occur only for “large” step sizes k. But if the
subsequence-LCGs do not have full-period, the underlying lattice structure can be
of reduced quality as well. We demonstrate this behavior using zooms into the unit
square, see Fig. 2.

4. CONCLUSION

Many pseudorandom number generation methods are equivalent or closely equiva-
lent to LCGs or multiple recursive generators [L’Ecuyer 1996; L’Ecuyer and Couture
1997; Tezuka et al. 1993; Couture and L’Ecuyer 1996; Couture and L’Ecuyer 1997;
Niederreiter 1995]. Hence, almost all pseudorandom number generators used in
simulations today are linear methods.

A disadvantage of many linear methods is their weakness with respect to subse-
quences, which restricts the use of these methods in parallel simulation.

We applied the spectral test to find small lags which result in bad subsequences
for many well-known LCGs. Our results underline the necessity to run a-priori tests,
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whenever subsequences of a linear generator are used for a particular simulation
problem.

Finally, we want to note that inversive pseudorandom number generators guar-
antee the absence of lattice structures, see the surveys [Eichenauer-Herrmann 1992;
Niederreiter 1995; Hellekalek 1995; L’Ecuyer 1994]. Especially explicit inversive
congruential PRNGs are very robust with respect to splitting their output into
subsequences. The splitting procedure is easy to handle. Inversive generators are
significantly slower than LCGs [Leeb and Wegenkittl 1997]. Nevertheless, the prop-
erties of these generators differ substantially from those of LCGs and hence make
them an alternative choice to verify simulation results obtained by linear methods.
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Fig. 2. Subsequences with reduced quality for LCG 3, 12 and 14c



